IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v83y2018icp170-179.html
   My bibliography  Save this article

The average risk sharing problem under risk measure and expected utility theory

Author

Listed:
  • Mao, Tiantian
  • Hu, Jiuyun
  • Liu, Haiyan

Abstract

In this paper, we investigate an average risk sharing problem, in which the optimal objective function is called an average-inf-convolution. We study the properties of the average-inf-convolution for a general risk measure, and obtain the explicit form of the average-inf-convolution. We also analyze the average risk sharing problems in the classic utility models in behavioral economics. Explicit forms of the average-inf-convolutions are obtained in the expected utility model and in the utility-based shortfall model, respectively. In the rank-dependent expected utility (RDEU) model, we give a lower bound of the average-inf-convolution for the RDEU-based shortfall.

Suggested Citation

  • Mao, Tiantian & Hu, Jiuyun & Liu, Haiyan, 2018. "The average risk sharing problem under risk measure and expected utility theory," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 170-179.
  • Handle: RePEc:eee:insuma:v:83:y:2018:i:c:p:170-179
    DOI: 10.1016/j.insmatheco.2018.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668717306194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2018.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    2. Tiantian Mao & Jun Cai, 2018. "Risk measures based on behavioural economics theory," Finance and Stochastics, Springer, vol. 22(2), pages 367-393, April.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Chateauneuf, Alain & Dana, Rose-Anne & Tallon, Jean-Marc, 2000. "Optimal risk-sharing rules and equilibria with Choquet-expected-utility," Journal of Mathematical Economics, Elsevier, vol. 34(2), pages 191-214, October.
    5. Burgert, Christian & Rüschendorf, Ludger, 2008. "Allocation of risks and equilibrium in markets with finitely many traders," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 177-188, February.
    6. E. Jouini & W. Schachermayer & N. Touzi, 2008. "Optimal Risk Sharing For Law Invariant Monetary Utility Functions," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 269-292, April.
    7. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    8. Jun Cai & Haiyan Liu & Ruodu Wang, 2018. "Asymptotic Equivalence Of Risk Measures Under Dependence Uncertainty," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 29-49, January.
    9. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, April.
    10. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    11. Chateauneuf, Alain & Dana, Rose-Anne & Tallon, Jean-Marc, 2000. "Optimal risk-sharing rules and equilibria with Choquet-expected-utility," Journal of Mathematical Economics, Elsevier, vol. 34(2), pages 191-214, October.
    12. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    13. Filipovic, Damir & Kupper, Michael, 2007. "Monotone and cash-invariant convex functions and hulls," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 1-16, July.
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    15. repec:dau:papers:123456789/361 is not listed on IDEAS
    16. Barrieu, Pauline & El Karoui, Nicole, 2005. "Inf-convolution of risk measures and optimal risk transfer," LSE Research Online Documents on Economics 2829, London School of Economics and Political Science, LSE Library.
    17. Damir Filipović & Gregor Svindland, 2008. "Optimal capital and risk allocations for law- and cash-invariant convex functions," Finance and Stochastics, Springer, vol. 12(3), pages 423-439, July.
    18. Ruodu Wang, 2016. "Regulatory arbitrage of risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 337-347, March.
    19. Paul Embrechts & Haiyan Liu & Ruodu Wang, 2017. "Quantile-Based Risk Sharing," Swiss Finance Institute Research Paper Series 17-54, Swiss Finance Institute.
    20. repec:dau:papers:123456789/5461 is not listed on IDEAS
    21. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ouxiang & Hu, Taizhong, 2019. "Extreme-aggregation measures in the RDEU model," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 155-163.
    2. Paul Embrechts & Tiantian Mao & Qiuqi Wang & Ruodu Wang, 2021. "Bayes risk, elicitability, and the Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1190-1217, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    2. Acciaio, Beatrice & Svindland, Gregor, 2009. "Optimal risk sharing with different reference probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 426-433, June.
    3. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    4. Felix-Benedikt Liebrich & Gregor Svindland, 2018. "Risk sharing for capital requirements with multidimensional security markets," Papers 1809.10015, arXiv.org.
    5. Mario Ghossoub & Qinghua Ren & Ruodu Wang, 2024. "Counter-monotonic risk allocations and distortion risk measures," Papers 2407.16099, arXiv.org.
    6. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
    7. Felix-Benedikt Liebrich & Gregor Svindland, 2019. "Risk sharing for capital requirements with multidimensional security markets," Finance and Stochastics, Springer, vol. 23(4), pages 925-973, October.
    8. Li, Peng & Lim, Andrew E.B. & Shanthikumar, J. George, 2010. "Optimal risk transfer for agents with germs," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 1-12, August.
    9. Liu, Peng & Wang, Ruodu & Wei, Linxiao, 2020. "Is the inf-convolution of law-invariant preferences law-invariant?," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 144-154.
    10. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    11. Wang, Ruodu & Wei, Yunran, 2020. "Characterizing optimal allocations in quantile-based risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 288-300.
    12. Pazdera, Jaroslav & Schumacher, Johannes M. & Werker, Bas J.M., 2017. "The composite iteration algorithm for finding efficient and financially fair risk-sharing rules," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 122-133.
    13. Nabil Kazi-Tani, 2018. "Inf-Convolution of Choquet Integrals and Applications in Optimal Risk Transfer," Working Papers hal-01742629, HAL.
    14. Xia Han & Qiuqi Wang & Ruodu Wang & Jianming Xia, 2021. "Cash-subadditive risk measures without quasi-convexity," Papers 2110.12198, arXiv.org, revised May 2024.
    15. Zou, Zhenfeng & Wu, Qinyu & Xia, Zichao & Hu, Taizhong, 2023. "Adjusted Rényi entropic Value-at-Risk," European Journal of Operational Research, Elsevier, vol. 306(1), pages 255-268.
    16. Zou, Zhenfeng & Hu, Taizhong, 2024. "Adjusted higher-order expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 1-12.
    17. Tim J. Boonen & Fangda Liu & Ruodu Wang, 2021. "Competitive equilibria in a comonotone market," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(4), pages 1217-1255, November.
    18. Hirbod Assa, 2015. "Optimal risk allocation in a market with non-convex preferences," Papers 1503.04460, arXiv.org.
    19. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    20. Stadje, M.A. & Pelsser, A., 2014. "Time-Consistent and Market-Consistent Evaluations (Revised version of 2012-086)," Discussion Paper 2014-002, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:83:y:2018:i:c:p:170-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.