A correction note to “Discrete time hedging errors for options with irregular payoffs”
Author
Abstract
Suggested Citation
DOI: 10.1007/s00780-014-0226-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Emmanuel Temam & Emmanuel Gobet, 2001. "Discrete time hedging errors for options with irregular payoffs," Finance and Stochastics, Springer, vol. 5(3), pages 357-367.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tankov, Peter & Voltchkova, Ekaterina, 2009. "Asymptotic analysis of hedging errors in models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2004-2027, June.
- Emmanuel Denis & Yuri Kabanov, 2010.
"Mean square error for the Leland–Lott hedging strategy: convex pay-offs,"
Finance and Stochastics, Springer, vol. 14(4), pages 625-667, December.
- Emmanuel Denis & Yuri Kabanov, 2010. "Mean square error for the Leland-Lott hedging strategy: convex pay-offs," Post-Print hal-00488278, HAL.
- Mats Brod'en & Magnus Wiktorsson, 2010. "Hedging Errors Induced by Discrete Trading Under an Adaptive Trading Strategy," Papers 1004.4526, arXiv.org.
- Stefan Geiss & Emmanuel Gobet, 2010. "Fractional smoothness and applications in finance," Papers 1004.3577, arXiv.org.
- Cl'ement M'enass'e & Peter Tankov, 2015. "Asymptotic indifference pricing in exponential L\'evy models," Papers 1502.03359, arXiv.org, revised Feb 2015.
- Takafumi Amaba, 2014. "A Discrete-Time Clark-Ocone Formula for Poisson Functionals," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(2), pages 97-120, May.
- Stefan Geiss & Emmanuel Gobet, 2011. "Fractional smoothness and applications in Finance," Post-Print hal-00474803, HAL.
- Huu Thai Nguyen & Serguei Pergamenchtchikov, 2012.
"Approximate hedging problem with transaction costs in stochastic volatility markets,"
Working Papers
hal-00808608, HAL.
- Huu Thai Nguyen & Serguei Pergamenchtchikov, 2012. "Approximate hedging problem with transaction costs in stochastic volatility markets," Working Papers hal-00747689, HAL.
- Mats Brod'en & Peter Tankov, 2010. "Tracking errors from discrete hedging in exponential L\'evy models," Papers 1003.0709, arXiv.org.
- repec:hal:wpaper:hal-01761234 is not listed on IDEAS
- Masaaki Fukasawa, 2012. "Efficient Discretization of Stochastic Integrals," Papers 1204.0637, arXiv.org.
- Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
- Jirô Akahori & Takafumi Amaba & Kaori Okuma, 2017. "A Discrete-Time Clark–Ocone Formula and its Application to an Error Analysis," Journal of Theoretical Probability, Springer, vol. 30(3), pages 932-960, September.
- Mika Hujo, 2006. "Is the Approximation Rate for European Pay-offs in the Black–Scholes Model Always 1/ $$\sqrt{n}$$," Journal of Theoretical Probability, Springer, vol. 19(1), pages 190-203, January.
- St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2012. "Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets," Papers 1205.4089, arXiv.org.
- Asaf Cohen & Yan Dolinsky, 2022. "A scaling limit for utility indifference prices in the discretised Bachelier model," Finance and Stochastics, Springer, vol. 26(2), pages 335-358, April.
- Geiss, Christel & Geiss, Stefan, 2006. "On an approximation problem for stochastic integrals where random time nets do not help," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 407-422, March.
- Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
- Clément, Emmanuelle & Delattre, Sylvain & Gloter, Arnaud, 2013. "An infinite dimensional convolution theorem with applications to the efficient estimation of the integrated volatility," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2500-2521.
- Asaf Cohen & Yan Dolinsky, 2021. "A Scaling Limit for Utility Indifference Prices in the Discretized Bachelier Model," Papers 2102.11968, arXiv.org, revised Mar 2022.
- Emmanuel Gobet & Isaque Pimentel & Xavier Warin, 2020. "Option valuation and hedging using an asymmetric risk function: asymptotic optimality through fully nonlinear partial differential equations," Finance and Stochastics, Springer, vol. 24(3), pages 633-675, July.
More about this item
Keywords
Discrete time hedging; Approximation of stochastic integral; Rate of convergence; 60H05; 41A25; G12; C63;All these keywords.
JEL classification:
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:18:y:2014:i:2:p:483-485. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.