IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v18y2014i2p431-482.html
   My bibliography  Save this article

Bilateral credit valuation adjustment for large credit derivatives portfolios

Author

Listed:
  • Lijun Bo
  • Agostino Capponi

Abstract

We obtain an explicit formula for the bilateral counterparty valuation adjustment of a credit default swaps portfolio referencing an asymptotically large number of entities. We perform the analysis under a doubly stochastic intensity framework, allowing default correlation through a common jump process. The key insight behind our approach is an explicit characterization of the portfolio exposure as the weak limit of measure-valued processes associated with survival indicators of portfolio names. We validate our theoretical predictions by means of a numerical analysis, showing that counterparty adjustments are highly sensitive to portfolio credit risk volatility as well as to the intensity of the common jump process. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Lijun Bo & Agostino Capponi, 2014. "Bilateral credit valuation adjustment for large credit derivatives portfolios," Finance and Stochastics, Springer, vol. 18(2), pages 431-482, April.
  • Handle: RePEc:spr:finsto:v:18:y:2014:i:2:p:431-482
    DOI: 10.1007/s00780-013-0217-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-013-0217-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-013-0217-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. T. R. Bielecki & S. Crépey & M. Jeanblanc & B. Zargari, 2012. "Valuation And Hedging Of Cds Counterparty Exposure In A Markov Copula Model," World Scientific Book Chapters, in: Matheus R Grasselli & Lane P Hughston (ed.), Finance at Fields, chapter 4, pages 75-113, World Scientific Publishing Co. Pte. Ltd..
    2. Leif Andersen & Jesper Andreasen, 2000. "Volatility skews and extensions of the Libor market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(1), pages 1-32.
    3. Paolo Dai Pra & Wolfgang J. Runggaldier & Elena Sartori & Marco Tolotti, 2007. "Large portfolio losses: A dynamic contagion model," Papers 0704.1348, arXiv.org, revised Mar 2009.
    4. Alain BÉlanger & Steven E. Shreve & Dennis Wong, 2004. "A General Framework For Pricing Credit Risk," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 317-350, July.
    5. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers, 2011. "Default clustering in large portfolios: Typical events," Papers 1104.1773, arXiv.org, revised Feb 2013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tetsuya Adachi & Takumi Sueshige & Toshinao Yoshiba, 2019. "Wrong-way Risk in Credit Valuation Adjustment of Credit Default Swap with Copulas," IMES Discussion Paper Series 19-E-01, Institute for Monetary and Economic Studies, Bank of Japan.
    2. Tomoyuki Ichiba & Michael Ludkovski & Andrey Sarantsev, 2019. "Dynamic contagion in a banking system with births and defaults," Annals of Finance, Springer, vol. 15(4), pages 489-538, December.
    3. Kim, Jinbeom & Leung, Tim, 2016. "Pricing derivatives with counterparty risk and collateralization: A fixed point approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 525-539.
    4. Lixin Wu & Dawei Zhang, 2020. "xVA: DEFINITION, EVALUATION AND RISK MANAGEMENT," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-24, February.
    5. Ding, Kailin & Ning, Ning, 2021. "Markov chain approximation and measure change for time-inhomogeneous stochastic processes," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    6. Irena Barjav{s}i'c & Stefano Battiston & Vinko Zlati'c, 2023. "Credit Valuation Adjustment in Financial Networks," Papers 2305.16434, arXiv.org.
    7. Konstantinos Spiliopoulos, 2014. "Systemic Risk and Default Clustering for Large Financial Systems," Papers 1402.5352, arXiv.org, revised Feb 2015.
    8. David Xiao, 2023. "Default Process Modeling and Credit Valuation Adjustment," Papers 2309.03311, arXiv.org.
    9. Feinstein, Zachary & Sojmark, Andreas, 2021. "Short communication: dynamic default contagion in heterogeneous interbank systems," LSE Research Online Documents on Economics 123789, London School of Economics and Political Science, LSE Library.
    10. Lee, David, 2023. "Default Forecasting and Credit Valuation Adjustment," MPRA Paper 118578, University Library of Munich, Germany.
    11. Agostino Capponi & Xu Sun & David D. Yao, 2020. "A Dynamic Network Model of Interbank Lending—Systemic Risk and Liquidity Provisioning," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1127-1152, August.
    12. Konstantinos Spiliopoulos & Jia Yang, 2018. "Network effects in default clustering for large systems," Papers 1812.07645, arXiv.org, revised Feb 2020.
    13. Matteo Citterio & Marco D'Errico & Gabriele Visentin, 2024. "Conditional Forecasting of Margin Calls using Dynamic Graph Neural Networks," Papers 2410.23275, arXiv.org.
    14. Bo, Lijun & Capponi, Agostino, 2015. "Counterparty risk for CDS: Default clustering effects," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 29-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Spiliopoulos & Jia Yang, 2018. "Network effects in default clustering for large systems," Papers 1812.07645, arXiv.org, revised Feb 2020.
    2. Ben Hambly & Nikolaos Kolliopoulos, 2020. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Finance and Stochastics, Springer, vol. 24(3), pages 757-794, July.
    3. Tang, Qihe & Tang, Zhaofeng & Yang, Yang, 2019. "Sharp asymptotics for large portfolio losses under extreme risks," European Journal of Operational Research, Elsevier, vol. 276(2), pages 710-722.
    4. Josselin Garnier & George Papanicolaou & Tzu-Wei Yang, 2015. "A risk analysis for a system stabilized by a central agent," Papers 1507.08333, arXiv.org, revised Aug 2015.
    5. Sirignano, Justin & Spiliopoulos, Konstantinos, 2020. "Mean field analysis of neural networks: A central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1820-1852.
    6. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    7. Konstantinos Spiliopoulos & Richard B. Sowers, 2013. "Default Clustering in Large Pools: Large Deviations," Papers 1311.0498, arXiv.org, revised Feb 2015.
    8. Konstantinos Spiliopoulos, 2014. "Systemic Risk and Default Clustering for Large Financial Systems," Papers 1402.5352, arXiv.org, revised Feb 2015.
    9. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    10. Xiaowei Zhang & Jose Blanchet & Kay Giesecke & Peter W. Glynn, 2015. "Affine Point Processes: Approximation and Efficient Simulation," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 797-819, October.
    11. Eckhard Platen, 2005. "An Alternative Interest Rate Term Structure Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(06), pages 717-735.
    12. Tomasz R. Bielecki & Areski Cousin & Stéphane Crépey & Alexander Herbertsson, 2014. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 90-102, April.
    13. Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2016. "Arbitrage-Free XVA," Papers 1608.02690, arXiv.org.
    14. Dan Pirjol & Lingjiong Zhu, 2019. "Explosion in the quasi-Gaussian HJM model," Papers 1908.07102, arXiv.org.
    15. Agostino Capponi & José Figueroa-López & Andrea Pascucci, 2015. "Dynamic credit investment in partially observed markets," Finance and Stochastics, Springer, vol. 19(4), pages 891-939, October.
    16. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    17. Agostino Capponi & Xu Sun & David D. Yao, 2020. "A Dynamic Network Model of Interbank Lending—Systemic Risk and Liquidity Provisioning," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1127-1152, August.
    18. Baaquie, Belal E. & Tang, Pan, 2012. "Simulation of nonlinear interest rates in quantum finance: Libor Market Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1287-1308.
    19. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    20. Andersen, Leif & Andreasen, Jesper, 2001. "Factor dependence of Bermudan swaptions: fact or fiction?," Journal of Financial Economics, Elsevier, vol. 62(1), pages 3-37, October.

    More about this item

    Keywords

    Credit valuation adjustment; Weak convergence; Doubly stochastic processes; Credit default swaps; 91G40; G13;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:18:y:2014:i:2:p:431-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.