IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1507.08333.html
   My bibliography  Save this paper

A risk analysis for a system stabilized by a central agent

Author

Listed:
  • Josselin Garnier
  • George Papanicolaou
  • Tzu-Wei Yang

Abstract

We formulate and analyze a multi-agent model for the evolution of individual and systemic risk in which the local agents interact with each other through a central agent who, in turn, is influenced by the mean field of the local agents. The central agent is stabilized by a bistable potential, the only stabilizing force in the system. The local agents derive their stability only from the central agent. In the mean field limit of a large number of local agents we show that the systemic risk decreases when the strength of the interaction of the local agents with the central agent increases. This means that the probability of transition from one of the two stable quasi-equilibria to the other one decreases. We also show that the systemic risk increases when the strength of the interaction of the central agent with the mean field of the local agents increases. Following the financial interpretation of such models and their behavior given in our previous paper (Garnier, Papanicolaou and Yang, SIAM J. Fin. Math. 4, 2013, 151-184), we may interpret the results of this paper in the following way. From the point of view of systemic risk, and while keeping the perceived risk of the local agents approximately constant, it is better to strengthen the interaction of the local agents with the central agent than the other way around.

Suggested Citation

  • Josselin Garnier & George Papanicolaou & Tzu-Wei Yang, 2015. "A risk analysis for a system stabilized by a central agent," Papers 1507.08333, arXiv.org, revised Aug 2015.
  • Handle: RePEc:arx:papers:1507.08333
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1507.08333
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kurtz, Thomas G. & Xiong, Jie, 1999. "Particle representations for a class of nonlinear SPDEs," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 103-126, September.
    2. Rene Carmona & Jean-Pierre Fouque & Li-Hsien Sun, 2013. "Mean Field Games and Systemic Risk," Papers 1308.2172, arXiv.org.
    3. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers & Justin A. Sirignano, 2015. "Large Portfolio Asymptotics For Loss From Default," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 77-114, January.
    4. Fouque,Jean-Pierre & Langsam,Joseph A. (ed.), 2013. "Handbook on Systemic Risk," Cambridge Books, Cambridge University Press, number 9781107023437, January.
    5. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers & Justin A. Sirignano, 2011. "Large Portfolio Asymptotics for Loss From Default," Papers 1109.1272, arXiv.org, revised Feb 2015.
    6. Paolo Dai Pra & Wolfgang J. Runggaldier & Elena Sartori & Marco Tolotti, 2007. "Large portfolio losses: A dynamic contagion model," Papers 0704.1348, arXiv.org, revised Mar 2009.
    7. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers, 2011. "Default clustering in large portfolios: Typical events," Papers 1104.1773, arXiv.org, revised Feb 2013.
    8. Konstantinos Spiliopoulos & Richard B. Sowers, 2013. "Default Clustering in Large Pools: Large Deviations," Papers 1311.0498, arXiv.org, revised Feb 2015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Hsien Sun, 2019. "Systemic Risk and Heterogeneous Mean Field Type Interbank Network," Papers 1907.03082, arXiv.org, revised Sep 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Spiliopoulos & Jia Yang, 2018. "Network effects in default clustering for large systems," Papers 1812.07645, arXiv.org, revised Feb 2020.
    2. Ben Hambly & Nikolaos Kolliopoulos, 2020. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Finance and Stochastics, Springer, vol. 24(3), pages 757-794, July.
    3. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    4. Ben Hambly & Andreas Sojmark, 2018. "An SPDE Model for Systemic Risk with Endogenous Contagion," Papers 1801.10088, arXiv.org, revised Sep 2018.
    5. Tang, Qihe & Tang, Zhaofeng & Yang, Yang, 2019. "Sharp asymptotics for large portfolio losses under extreme risks," European Journal of Operational Research, Elsevier, vol. 276(2), pages 710-722.
    6. Sirignano, Justin & Spiliopoulos, Konstantinos, 2020. "Mean field analysis of neural networks: A central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1820-1852.
    7. Ben Hambly & Nikolaos Kolliopoulos, 2018. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Papers 1811.08808, arXiv.org, revised Feb 2020.
    8. Ben Hambly & Andreas Søjmark, 2019. "An SPDE model for systemic risk with endogenous contagion," Finance and Stochastics, Springer, vol. 23(3), pages 535-594, July.
    9. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    10. Ben Hambly & Nikolaos Kolliopoulos, 2019. "Stochastic PDEs for large portfolios with general mean-reverting volatility processes," Papers 1906.05898, arXiv.org, revised Mar 2024.
    11. Xiaowei Zhang & Jose Blanchet & Kay Giesecke & Peter W. Glynn, 2015. "Affine Point Processes: Approximation and Efficient Simulation," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 797-819, October.
    12. Agostino Capponi & Xu Sun & David D. Yao, 2020. "A Dynamic Network Model of Interbank Lending—Systemic Risk and Liquidity Provisioning," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1127-1152, August.
    13. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    14. Egami, M. & Kevkhishvili, R., 2017. "An analysis of simultaneous company defaults using a shot noise process," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 135-161.
    15. Burzoni, Matteo & Campi, Luciano, 2023. "Mean field games with absorption and common noise with a model of bank run," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 206-241.
    16. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.
    17. Fei Fang & Yiwei Sun & Konstantinos Spiliopoulos, 2016. "The effect of heterogeneity on flocking behavior and systemic risk," Papers 1607.08287, arXiv.org, revised Jun 2017.
    18. Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.
    19. Sergey Nadtochiy & Mykhaylo Shkolnikov, 2017. "Particle systems with singular interaction through hitting times: application in systemic risk modeling," Papers 1705.00691, arXiv.org.
    20. Zachary Feinstein & Andreas Sojmark, 2019. "A Dynamic Default Contagion Model: From Eisenberg-Noe to the Mean Field," Papers 1912.08695, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1507.08333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.