IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i6d10.1140_epjb_s10051-024-00730-3.html
   My bibliography  Save this article

Kaniadakis entropy in extreme gravitational and cosmological environments: a review on the state-of-the-art and future prospects

Author

Listed:
  • Giuseppe Gaetano Luciano

    (Universidad de Lleida)

Abstract

Kaniadakis ( $$\kappa $$ κ -deformed) statistics is being widely used for describing relativistic systems with non-extensive behavior and/or interactions. It is built upon a one-parameter generalization of the classical Boltzmann–Gibbs–Shannon entropy, possessing the latter as a particular sub-case. Recently, Kaniadakis model has been adapted to accommodate the complexities of systems under the influence of gravity. The ensuing framework exhibits a rich phenomenology that allows for a deeper understanding of the most extreme conditions of the Universe. Here we present the state-of-the-art of $$\kappa $$ κ -statistics, discussing its virtues and drawbacks at different energy scales. Special focus is dedicated to gravitational and cosmological implications, including effects on the expanding Universe in dark energy scenarios. This review highlights the versatility of Kaniadakis paradigm, demonstrating its broad application across various fields and setting the stage for further advancements in statistical modeling and theoretical physics. GraphicAbstract

Suggested Citation

  • Giuseppe Gaetano Luciano, 2024. "Kaniadakis entropy in extreme gravitational and cosmological environments: a review on the state-of-the-art and future prospects," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-13, June.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:6:d:10.1140_epjb_s10051-024-00730-3
    DOI: 10.1140/epjb/s10051-024-00730-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00730-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00730-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abreu, Everton M.C. & Ananias Neto, Jorge & Mendes, Albert C.R. & de Paula, Rodrigo M., 2019. "Loop quantum gravity Immirzi parameter and the Kaniadakis statistics," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 307-310.
    2. G. Kaniadakis, 2009. "Maximum entropy principle and power-law tailed distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(1), pages 3-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. da Silva, Sérgio Luiz E.F., 2021. "κ-generalised Gutenberg–Richter law and the self-similarity of earthquakes," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Stella, Massimo & Brede, Markus, 2014. "A κ-deformed model of growing complex networks with fitness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 360-368.
    3. Qin, Xianan & Song, Congwei, 2021. "Towards understanding the non-Gaussian pore size distributions of nonwoven fabrics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Sarabia, José María & Prieto, Faustino & Trueba, Carmen & Jordá, Vanesa, 2013. "About the modified Gaussian family of income distributions with applications to individual incomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1398-1408.
    5. Fabio CLEMENTI & Mauro GALLEGATI, 2017. "NEW ECONOMIC WINDOWS ON INCOME AND WEALTH: THE k-GENERALIZED FAMILY OF DISTRIBUTIONS," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 6(1), pages 1-15, JULY.
    6. Chami Figueira, F. & Moura, N.J. & Ribeiro, M.B., 2011. "The Gompertz–Pareto income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 689-698.
    7. Asgarani, Somayeh, 2013. "A set of new three-parameter entropies in terms of a generalized incomplete Gamma function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 1972-1976.
    8. Furuichi, Shigeru & Mitroi, Flavia-Corina, 2012. "Mathematical inequalities for some divergences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 388-400.
    9. Ervin Kaminski Lenzi & Luiz Roberto Evangelista & Luciano Rodrigues da Silva, 2023. "Aspects of Quantum Statistical Mechanics: Fractional and Tsallis Approaches," Mathematics, MDPI, vol. 11(12), pages 1-15, June.
    10. Kaiwei Liu & Xingcheng Wang & Zhihui Qu, 2019. "Train Operation Strategy Optimization Based on a Double-Population Genetic Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 12(13), pages 1-26, June.
    11. McKeague, Ian W., 2015. "Central limit theorems under special relativity," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 149-155.
    12. de Lima, M.M.F. & Costa, M.O. & Silva, R. & Fulco, U.L. & Oliveira, J.I.N. & Vasconcelos, M.S. & Anselmo, D.H.A.L., 2024. "Viral proteins length distributions: A comparative analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    13. da Silva, Sérgio Luiz E.F. & Silva, R. & dos Santos Lima, Gustavo Z. & de Araújo, João M. & Corso, Gilberto, 2022. "An outlier-resistant κ-generalized approach for robust physical parameter estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    14. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2021. "Two-parameter fractional Tsallis information dimensions of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Vallejos, Adams & Ormazábal, Ignacio & Borotto, Félix A. & Astudillo, Hernán F., 2019. "A new κ-deformed parametric model for the size distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 819-829.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:6:d:10.1140_epjb_s10051-024-00730-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.