IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i10d10.1140_epjb_s10051-024-00784-3.html
   My bibliography  Save this article

Single-photon stimulated emission in waveguide quantum electrodynamics

Author

Listed:
  • O. A. Chuikin

    (Novosibirsk State Technical University)

  • Ya. S. Greenberg

    (Novosibirsk State Technical University)

  • A. A. Shtygashev

    (Novosibirsk State Technical University)

  • A. G. Moiseev

    (Novosibirsk State Technical University)

Abstract

We study the scattering of a single-photon pulse from quantum two-level system (qubit) coupled to a continuum spectrum of modes in a one-dimensional (1D) nanophotonic waveguide. We consider two different cases—single-excitation subspace, when photon is incident on a qubit in the ground state, and two-excitation subspace, when photon is incident on excited qubit. For both cases, we find the spatial distribution of photon fields inside a waveguide and derive a time-dependent analytical solution for qubit and photon amplitudes, which can be used to obtain probabilities to find excited qubit and forward or backward moving photons in different configurations. We find that incident wave has much higher probability to be transmitted through the excited qubit which is a signature of single-photon stimulated emission. This property together with a fact that a qubit in the ground state almost completely reflects resonant photons, which can be used to develop method to detect qubit state in an open waveguide. By analyzing two-photon amplitudes for photon incident on excited qubit, we show clear evidence of stimulated emission. Calculations are performed for two initial states of incident photon: plane wave and Gaussian pulse. Graphic abstract

Suggested Citation

  • O. A. Chuikin & Ya. S. Greenberg & A. A. Shtygashev & A. G. Moiseev, 2024. "Single-photon stimulated emission in waveguide quantum electrodynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-20, October.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:10:d:10.1140_epjb_s10051-024-00784-3
    DOI: 10.1140/epjb/s10051-024-00784-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00784-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00784-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Lamas-Linares & J. C. Howell & D. Bouwmeester, 2001. "Stimulated emission of polarization-entangled photons," Nature, Nature, vol. 412(6850), pages 887-890, August.
    2. Neil V. Corzo & Jérémy Raskop & Aveek Chandra & Alexandra S. Sheremet & Baptiste Gouraud & Julien Laurat, 2019. "Waveguide-coupled single collective excitation of atomic arrays," Nature, Nature, vol. 566(7744), pages 359-362, February.
    3. Mohammad Mirhosseini & Eunjong Kim & Xueyue Zhang & Alp Sipahigil & Paul B. Dieterle & Andrew J. Keller & Ana Asenjo-Garcia & Darrick E. Chang & Oskar Painter, 2019. "Cavity quantum electrodynamics with atom-like mirrors," Nature, Nature, vol. 569(7758), pages 692-697, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena S. Redchenko & Alexander V. Poshakinskiy & Riya Sett & Martin Žemlička & Alexander N. Poddubny & Johannes M. Fink, 2023. "Tunable directional photon scattering from a pair of superconducting qubits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Ya. S. Greenberg & A. A. Shtygashev & A. G. Moiseev, 2023. "Time-dependent theory of single-photon scattering from a two-qubit system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-17, December.
    4. Ya. S. Greenberg & A. A. Shtygashev & A. G. Moiseev, 2021. "Spontaneous decay of artificial atoms in a three-qubit system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-19, November.
    5. Ya. S. Greenberg & O. A. Chuikin, 2022. "Superradiant emission spectra of a two-qubit system in circuit quantum electrodynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-19, September.
    6. Zi-Qi Wang & Yi-Pu Wang & Jiguang Yao & Rui-Chang Shen & Wei-Jiang Wu & Jie Qian & Jie Li & Shi-Yao Zhu & J. Q. You, 2022. "Giant spin ensembles in waveguide magnonics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:10:d:10.1140_epjb_s10051-024-00784-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.