IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v94y2021i11d10.1140_epjb_s10051-021-00228-2.html
   My bibliography  Save this article

Spontaneous decay of artificial atoms in a three-qubit system

Author

Listed:
  • Ya. S. Greenberg

    (Novosibirsk State Technical University)

  • A. A. Shtygashev

    (Novosibirsk State Technical University)

  • A. G. Moiseev

    (Novosibirsk State Technical University)

Abstract

We study the evolution of qubits amplitudes in a one-dimensional chain consisting of three equidistantly spaced noninteracting qubits embedded in an open waveguide. The study is performed in the frame of single-excitation subspace, where the only qubit in the chain is initially excited. We show that the dynamics of qubits amplitudes crucially depend on the value of kd, where k is the wave vector and d is a distance between neighbor qubits. If kd is equal to an integer multiple of $$\pi $$ π , then the qubits are excited to a stationary level. In this case, it is the dark states which prevent qubits from decaying to zero, even though they do not contribute to the output spectrum of photon emission. For other values of kd, the excitations of qubits exhibit the damping oscillations which represent the vacuum Rabi oscillations in a three-qubit system. In this case, the output spectrum of photon radiation is determined by a subradiant state which has the lowest decay rate. We also investigated the case with the frequency of a central qubit being different from that of the edge qubits. In this case, the qubits’ decay rates can be controlled by the frequency detuning between the central and the edge qubits.

Suggested Citation

  • Ya. S. Greenberg & A. A. Shtygashev & A. G. Moiseev, 2021. "Spontaneous decay of artificial atoms in a three-qubit system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-19, November.
  • Handle: RePEc:spr:eurphb:v:94:y:2021:i:11:d:10.1140_epjb_s10051-021-00228-2
    DOI: 10.1140/epjb/s10051-021-00228-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-021-00228-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-021-00228-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Zhou & Zhenxing Zhang & Zelong Yin & Sainan Huai & Xiu Gu & Xiong Xu & Jonathan Allcock & Fuming Liu & Guanglei Xi & Qiaonian Yu & Hualiang Zhang & Mengyu Zhang & Hekang Li & Xiaohui Song & Zhan Wa, 2021. "Rapid and unconditional parametric reset protocol for tunable superconducting qubits," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Mohammad Mirhosseini & Eunjong Kim & Xueyue Zhang & Alp Sipahigil & Paul B. Dieterle & Andrew J. Keller & Ana Asenjo-Garcia & Darrick E. Chang & Oskar Painter, 2019. "Cavity quantum electrodynamics with atom-like mirrors," Nature, Nature, vol. 569(7758), pages 692-697, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya. S. Greenberg & O. A. Chuikin, 2022. "Superradiant emission spectra of a two-qubit system in circuit quantum electrodynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena S. Redchenko & Alexander V. Poshakinskiy & Riya Sett & Martin Žemlička & Alexander N. Poddubny & Johannes M. Fink, 2023. "Tunable directional photon scattering from a pair of superconducting qubits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Ya. S. Greenberg & A. A. Shtygashev & A. G. Moiseev, 2023. "Time-dependent theory of single-photon scattering from a two-qubit system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-17, December.
    3. Ya. S. Greenberg & O. A. Chuikin, 2022. "Superradiant emission spectra of a two-qubit system in circuit quantum electrodynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-19, September.
    4. O. A. Chuikin & Ya. S. Greenberg & A. A. Shtygashev & A. G. Moiseev, 2024. "Single-photon stimulated emission in waveguide quantum electrodynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-20, October.
    5. Zi-Qi Wang & Yi-Pu Wang & Jiguang Yao & Rui-Chang Shen & Wei-Jiang Wu & Jie Qian & Jie Li & Shi-Yao Zhu & J. Q. You, 2022. "Giant spin ensembles in waveguide magnonics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:94:y:2021:i:11:d:10.1140_epjb_s10051-021-00228-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.