IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v569y2019i7758d10.1038_s41586-019-1196-1.html
   My bibliography  Save this article

Cavity quantum electrodynamics with atom-like mirrors

Author

Listed:
  • Mohammad Mirhosseini

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Eunjong Kim

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Xueyue Zhang

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Alp Sipahigil

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Paul B. Dieterle

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Andrew J. Keller

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Ana Asenjo-Garcia

    (California Institute of Technology
    California Institute of Technology
    The Barcelona Institute of Science and Technology
    Columbia University)

  • Darrick E. Chang

    (The Barcelona Institute of Science and Technology
    ICREA-Institució Catalana de Recerca i Estudis Avançats)

  • Oskar Painter

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

Abstract

It has long been recognized that atomic emission of radiation is not an immutable property of an atom, but is instead dependent on the electromagnetic environment1 and, in the case of ensembles, also on the collective interactions between the atoms2–6. In an open radiative environment, the hallmark of collective interactions is enhanced spontaneous emission—super-radiance2—with non-dissipative dynamics largely obscured by rapid atomic decay7. Here we observe the dynamical exchange of excitations between a single artificial atom and an entangled collective state of an atomic array9 through the precise positioning of artificial atoms realized as superconducting qubits8 along a one-dimensional waveguide. This collective state is dark, trapping radiation and creating a cavity-like system with artificial atoms acting as resonant mirrors in the otherwise open waveguide. The emergent atom–cavity system is shown to have a large interaction-to-dissipation ratio (cooperativity exceeding 100), reaching the regime of strong coupling, in which coherent interactions dominate dissipative and decoherence effects. Achieving strong coupling with interacting qubits in an open waveguide provides a means of synthesizing multi-photon dark states with high efficiency and paves the way for exploiting correlated dissipation and decoherence-free subspaces of quantum emitter arrays at the many-body level10–13.

Suggested Citation

  • Mohammad Mirhosseini & Eunjong Kim & Xueyue Zhang & Alp Sipahigil & Paul B. Dieterle & Andrew J. Keller & Ana Asenjo-Garcia & Darrick E. Chang & Oskar Painter, 2019. "Cavity quantum electrodynamics with atom-like mirrors," Nature, Nature, vol. 569(7758), pages 692-697, May.
  • Handle: RePEc:nat:nature:v:569:y:2019:i:7758:d:10.1038_s41586-019-1196-1
    DOI: 10.1038/s41586-019-1196-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1196-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1196-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya. S. Greenberg & O. A. Chuikin, 2022. "Superradiant emission spectra of a two-qubit system in circuit quantum electrodynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-19, September.
    2. Ya. S. Greenberg & A. A. Shtygashev & A. G. Moiseev, 2021. "Spontaneous decay of artificial atoms in a three-qubit system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-19, November.
    3. O. A. Chuikin & Ya. S. Greenberg & A. A. Shtygashev & A. G. Moiseev, 2024. "Single-photon stimulated emission in waveguide quantum electrodynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-20, October.
    4. Zi-Qi Wang & Yi-Pu Wang & Jiguang Yao & Rui-Chang Shen & Wei-Jiang Wu & Jie Qian & Jie Li & Shi-Yao Zhu & J. Q. You, 2022. "Giant spin ensembles in waveguide magnonics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Elena S. Redchenko & Alexander V. Poshakinskiy & Riya Sett & Martin Žemlička & Alexander N. Poddubny & Johannes M. Fink, 2023. "Tunable directional photon scattering from a pair of superconducting qubits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Ya. S. Greenberg & A. A. Shtygashev & A. G. Moiseev, 2023. "Time-dependent theory of single-photon scattering from a two-qubit system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:569:y:2019:i:7758:d:10.1038_s41586-019-1196-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.