IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v94y2021i8d10.1140_epjb_s10051-021-00170-3.html
   My bibliography  Save this article

Liquid intrusion in and extrusion from non-wettable nanopores for technological applications

Author

Listed:
  • Alberto Giacomello

    (Sapienza Università di Roma)

  • Carlo Massimo Casciola

    (Sapienza Università di Roma)

  • Yaroslav Grosu

    (Basque Research and Technology Alliance (BRTA)
    University of Silesia)

  • Simone Meloni

    (Università degli Studi di Ferrara (Unife))

Abstract

In this article, we review some recent theoretical results about intrusion and extrusion of non-wetting liquids in and out of cavities of nanotextured surfaces and nanoporous materials. Nanoscale confinement allows these processes to happen at conditions which significantly differ from bulk phase coexistence. In particular, the pressure at which a liquid penetrates in and exits from cavities is of interest for many technological applications such as energy storage, dissipation, and conversion, materials with negative compressibility, ion channels, liquid chromatography, and more. Notwithstanding its technological interest, intrusion/extrusion processes are difficult to understand and control solely via experiments: the missing step is often a simple theory capable of providing a microscopic interpretation of the results, e.g., of liquid porosimetry or other techniques used in the field, especially in the case of complex nanoporous media. In this context, simulations can help shedding light on the relation between the morphology of pores, the chemical composition of the solids and liquids, and the thermodynamics and kinetics of intrusion and extrusion. Indeed, the intrusion/extrusion kinetics is determined by the presence of free energy barriers and special approaches, the so-called rare event techniques, must be used to study these processes. Usually, rare event techniques are employed to investigate processes occurring in relatively simple molecular systems, while intrusion/extrusion concerns the collective dynamics of hundreds to thousands of degrees of freedom, the molecules of a liquid entering in or exiting from a cavity, which, from the methodological point of view, is itself a challenge.

Suggested Citation

  • Alberto Giacomello & Carlo Massimo Casciola & Yaroslav Grosu & Simone Meloni, 2021. "Liquid intrusion in and extrusion from non-wettable nanopores for technological applications," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-24, August.
  • Handle: RePEc:spr:eurphb:v:94:y:2021:i:8:d:10.1140_epjb_s10051-021-00170-3
    DOI: 10.1140/epjb/s10051-021-00170-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-021-00170-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-021-00170-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xuefeng Gao & Lei Jiang, 2004. "Water-repellent legs of water striders," Nature, Nature, vol. 432(7013), pages 36-36, November.
    2. David L. Hu & Brian Chan & John W. M. Bush, 2003. "The hydrodynamics of water strider locomotion," Nature, Nature, vol. 424(6949), pages 663-666, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yafei Zhang & Jiahua Zhang & Rui Luo & Yihua Dou, 2023. "Experimental Study on the Effects of Applied Electric Field on Liquid Infiltration into Hydrophobic Zeolite," Energies, MDPI, vol. 16(13), pages 1-14, June.
    2. Zhao, Weiwei & Zhang, Tongtong & Kildahl, Harriet & Ding, Yulong, 2022. "Mobile energy recovery and storage: Multiple energy-powered EVs and refuelling stations," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haobo Xu & Yimin Zhou & Dan Daniel & Joshua Herzog & Xiaoguang Wang & Volker Sick & Solomon Adera, 2023. "Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Delyle T Polet & Morris R Flynn & Felix A H Sperling, 2015. "A Mathematical Model to Capture Complex Microstructure Orientation on Insect Wings," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-15, October.
    4. Fillion, R.M. & Riahi, A.R. & Edrisy, A., 2014. "A review of icing prevention in photovoltaic devices by surface engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 797-809.
    5. Mingxu Sun & Jiamin Cheng & Miho Yamauchi, 2024. "Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Garlisi, Corrado & Trepci, Esra & Li, Xuan & Al Sakkaf, Reem & Al-Ali, Khalid & Nogueira, Ricardo Pereira & Zheng, Lianxi & Azar, Elie & Palmisano, Giovanni, 2020. "Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties," Applied Energy, Elsevier, vol. 264(C).
    8. Wancheng Gu & Wanbo Li & Yu Zhang & Yage Xia & Qiaoling Wang & Wei Wang & Ping Liu & Xinquan Yu & Hui He & Caihua Liang & Youxue Ban & Changwen Mi & Sha Yang & Wei Liu & Miaomiao Cui & Xu Deng & Zuank, 2023. "Ultra-durable superhydrophobic cellular coatings," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Al-Obaidi, Karam M. & Azzam Ismail, Muhammad & Hussein, Hazreena & Abdul Rahman, Abdul Malik, 2017. "Biomimetic building skins: An adaptive approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1472-1491.
    10. Minseok Gwon & Dongjin Kim & Baekgyeom Kim & Seungyong Han & Daeshik Kang & Je-Sung Koh, 2023. "Scale dependence in hydrodynamic regime for jumping on water," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Hakan Gürsu, 2024. "An Affordable System Solution for Enhancing Tree Survival in Dry Environments," Sustainability, MDPI, vol. 16(14), pages 1-32, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:94:y:2021:i:8:d:10.1140_epjb_s10051-021-00170-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.