IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37119-2.html
   My bibliography  Save this article

Scale dependence in hydrodynamic regime for jumping on water

Author

Listed:
  • Minseok Gwon

    (Ajou University)

  • Dongjin Kim

    (Ajou University)

  • Baekgyeom Kim

    (Ajou University)

  • Seungyong Han

    (Ajou University)

  • Daeshik Kang

    (Ajou University)

  • Je-Sung Koh

    (Ajou University)

Abstract

Momentum transfer from the water surface is strongly related to the dynamical scale and morphology of jumping animals. Here, we investigate the scale-dependent momentum transfer of various jumping organisms and engineered systems at an air-water interface. A simplified analytical model for calculating the maximum momentum transfer identifies an intermediate dynamical scale region highly disadvantageous for jumping on water. The Weber number of the systems should be designed far from 1 to achieve high jumping performance on water. We design a relatively large water-jumping robot in the drag-dominant scale range, having a high Weber number, for maximum jumping height and distance. The jumping robot, around 10 times larger than water striders, has a take-off speed of 3.6 m/s facilitated by drag-based propulsion, which is the highest value reported thus far. The scale-dependent hydrodynamics of water jumpers provides a useful framework for understanding nature and robotic system interacting with the water surface.

Suggested Citation

  • Minseok Gwon & Dongjin Kim & Baekgyeom Kim & Seungyong Han & Daeshik Kang & Je-Sung Koh, 2023. "Scale dependence in hydrodynamic regime for jumping on water," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37119-2
    DOI: 10.1038/s41467-023-37119-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37119-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37119-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eunjin Yang & Jae Hak Son & Sang-im Lee & Piotr G. Jablonski & Ho-Young Kim, 2016. "Water striders adjust leg movement speed to optimize takeoff velocity for their morphology," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    2. Yufeng Chen & Neel Doshi & Benjamin Goldberg & Hongqiang Wang & Robert J. Wood, 2018. "Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Elliot W. Hawkes & Charles Xiao & Richard-Alexandre Peloquin & Christopher Keeley & Matthew R. Begley & Morgan T. Pope & Günter Niemeyer, 2022. "Engineered jumpers overcome biological limits via work multiplication," Nature, Nature, vol. 604(7907), pages 657-661, April.
    4. David L. Hu & Brian Chan & John W. M. Bush, 2003. "The hydrodynamics of water strider locomotion," Nature, Nature, vol. 424(6949), pages 663-666, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongfa Zhao & Minyi Xu & Mingrui Shu & Jie An & Wenbo Ding & Xiangyu Liu & Siyuan Wang & Cong Zhao & Hongyong Yu & Hao Wang & Chuan Wang & Xianping Fu & Xinxiang Pan & Guangming Xie & Zhong Lin Wang, 2022. "Underwater wireless communication via TENG-generated Maxwell’s displacement current," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Haobo Xu & Yimin Zhou & Dan Daniel & Joshua Herzog & Xiaoguang Wang & Volker Sick & Solomon Adera, 2023. "Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Alberto Giacomello & Carlo Massimo Casciola & Yaroslav Grosu & Simone Meloni, 2021. "Liquid intrusion in and extrusion from non-wettable nanopores for technological applications," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-24, August.
    4. Yuhang Dai & Minfei Li & Bingqiang Ji & Xiong Wang & Siyan Yang & Peng Yu & Steven Wang & Chonglei Hao & Zuankai Wang, 2023. "Liquid metal droplets bouncing higher on thicker water layer," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Hakan Gürsu, 2024. "An Affordable System Solution for Enhancing Tree Survival in Dry Environments," Sustainability, MDPI, vol. 16(14), pages 1-32, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37119-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.