IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v432y2004i7013d10.1038_432036a.html
   My bibliography  Save this article

Water-repellent legs of water striders

Author

Listed:
  • Xuefeng Gao

    (Key Laboratory of Organic Solids, Institute of Chemistry
    Graduate School, Chinese Academy of Sciences)

  • Lei Jiang

    (Key Laboratory of Organic Solids, Institute of Chemistry
    National Center for Nanoscience and Nanotechnology)

Abstract

Water striders (Gerris remigis) have remarkable non-wetting legs that enable them to stand effortlessly and move quickly on water, a feature believed to be due to a surface-tension effect caused by secreted wax1,2,3. We show here, however, that it is the special hierarchical structure of the legs, which are covered by large numbers of oriented tiny hairs (microsetae) with fine nanogrooves, that is more important in inducing this water resistance.

Suggested Citation

  • Xuefeng Gao & Lei Jiang, 2004. "Water-repellent legs of water striders," Nature, Nature, vol. 432(7013), pages 36-36, November.
  • Handle: RePEc:nat:nature:v:432:y:2004:i:7013:d:10.1038_432036a
    DOI: 10.1038/432036a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/432036a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/432036a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fillion, R.M. & Riahi, A.R. & Edrisy, A., 2014. "A review of icing prevention in photovoltaic devices by surface engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 797-809.
    2. Haobo Xu & Yimin Zhou & Dan Daniel & Joshua Herzog & Xiaoguang Wang & Volker Sick & Solomon Adera, 2023. "Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Wancheng Gu & Wanbo Li & Yu Zhang & Yage Xia & Qiaoling Wang & Wei Wang & Ping Liu & Xinquan Yu & Hui He & Caihua Liang & Youxue Ban & Changwen Mi & Sha Yang & Wei Liu & Miaomiao Cui & Xu Deng & Zuank, 2023. "Ultra-durable superhydrophobic cellular coatings," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Al-Obaidi, Karam M. & Azzam Ismail, Muhammad & Hussein, Hazreena & Abdul Rahman, Abdul Malik, 2017. "Biomimetic building skins: An adaptive approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1472-1491.
    5. Alberto Giacomello & Carlo Massimo Casciola & Yaroslav Grosu & Simone Meloni, 2021. "Liquid intrusion in and extrusion from non-wettable nanopores for technological applications," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-24, August.
    6. Mingxu Sun & Jiamin Cheng & Miho Yamauchi, 2024. "Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Garlisi, Corrado & Trepci, Esra & Li, Xuan & Al Sakkaf, Reem & Al-Ali, Khalid & Nogueira, Ricardo Pereira & Zheng, Lianxi & Azar, Elie & Palmisano, Giovanni, 2020. "Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties," Applied Energy, Elsevier, vol. 264(C).
    8. Delyle T Polet & Morris R Flynn & Felix A H Sperling, 2015. "A Mathematical Model to Capture Complex Microstructure Orientation on Insect Wings," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-15, October.
    9. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:432:y:2004:i:7013:d:10.1038_432036a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.