IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6949d10.1038_nature01793.html
   My bibliography  Save this article

The hydrodynamics of water strider locomotion

Author

Listed:
  • David L. Hu

    (Department of Mathematics)

  • Brian Chan

    (Department of Mechanical Engineering MIT)

  • John W. M. Bush

    (Department of Mathematics)

Abstract

Water striders Gerridae are insects of characteristic length 1 cm and weight 10 dynes that reside on the surface of ponds, rivers, and the open ocean1,2,3,4. Their weight is supported by the surface tension force generated by curvature of the free surface5,6, and they propel themselves by driving their central pair of hydrophobic legs in a sculling motion7,8. Previous investigators have assumed that the hydrodynamic propulsion of the water strider relies on momentum transfer by surface waves1,9,10. This assumption leads to Denny's paradox11: infant water striders, whose legs are too slow to generate waves, should be incapable of propelling themselves along the surface. We here resolve this paradox through reporting the results of high-speed video and particle-tracking studies. Experiments reveal that the strider transfers momentum to the underlying fluid not primarily through capillary waves, but rather through hemispherical vortices shed by its driving legs. This insight guided us in constructing a self-contained mechanical water strider whose means of propulsion is analogous to that of its natural counterpart.

Suggested Citation

  • David L. Hu & Brian Chan & John W. M. Bush, 2003. "The hydrodynamics of water strider locomotion," Nature, Nature, vol. 424(6949), pages 663-666, August.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6949:d:10.1038_nature01793
    DOI: 10.1038/nature01793
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01793
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haobo Xu & Yimin Zhou & Dan Daniel & Joshua Herzog & Xiaoguang Wang & Volker Sick & Solomon Adera, 2023. "Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Minseok Gwon & Dongjin Kim & Baekgyeom Kim & Seungyong Han & Daeshik Kang & Je-Sung Koh, 2023. "Scale dependence in hydrodynamic regime for jumping on water," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Alberto Giacomello & Carlo Massimo Casciola & Yaroslav Grosu & Simone Meloni, 2021. "Liquid intrusion in and extrusion from non-wettable nanopores for technological applications," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-24, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6949:d:10.1038_nature01793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.