IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v468y2017icp722-732.html
   My bibliography  Save this article

Bin size independence in intra-day seasonalities for relative prices

Author

Listed:
  • Guevara Hidalgo, Esteban

Abstract

In this paper we perform a statistical analysis over the returns and relative prices of the CAC 40 and the S&P 500 with the purpose of analysing the intra-day seasonalities of single and cross-sectional stock dynamics. In order to do that, we characterized the dynamics of a stock (or a set of stocks) by the evolution of the moments of its returns (and relative prices) during a typical day. We show that these intra-day seasonalities are independent of the size of the bin, and the index we consider, (but characteristic for each index) for the case of the relative prices but not for the case of the returns. Finally, we suggest how this bin size independence could be used in order to characterize “atypical days” for indexes and “anomalous behaviours” in stocks.

Suggested Citation

  • Guevara Hidalgo, Esteban, 2017. "Bin size independence in intra-day seasonalities for relative prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 722-732.
  • Handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:722-732
    DOI: 10.1016/j.physa.2016.11.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116309529
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.11.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    2. Kullmann, L & Töyli, J & Kertesz, J & Kanto, A & Kaski, K, 1999. "Characteristic times in stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 98-110.
    3. Lisa Borland, 2012. "Statistical signatures in times of panic: markets as a self-organizing system," Quantitative Finance, Taylor & Francis Journals, vol. 12(9), pages 1367-1379, October.
    4. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
    5. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    7. repec:dau:papers:123456789/10898 is not listed on IDEAS
    8. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    9. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    10. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    11. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    12. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    13. T. Kaizoji, 2006. "A precursor of market crashes: Empirical laws of Japan's internet bubble," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 123-127, March.
    14. Taisei Kaizoji, 2005. "A Precursor of Market Crashes," Papers physics/0510055, arXiv.org, revised Mar 2006.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esteban Guevara Hidalgo, 2015. "Bin Size Independence in Intra-day Seasonalities for Relative Prices," Papers 1501.05176, arXiv.org, revised Dec 2016.
    2. Derksen, M. & Kleijn, B. & de Vilder, R., 2022. "Heavy tailed distributions in closing auctions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    3. Todorova, Lora & Vogt, Bodo, 2011. "Power law distribution in high frequency financial data? An econometric analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4433-4444.
    4. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    5. M. Derksen & B. Kleijn & R. de Vilder, 2020. "Heavy tailed distributions in closing auctions," Papers 2012.10145, arXiv.org.
    6. Frank McGroarty & Ash Booth & Enrico Gerding & V. L. Raju Chinthalapati, 2019. "High frequency trading strategies, market fragility and price spikes: an agent based model perspective," Annals of Operations Research, Springer, vol. 282(1), pages 217-244, November.
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    8. Vladimir Filimonov & Didier Sornette, 2014. "Power law scaling and "Dragon-Kings" in distributions of intraday financial drawdowns," Papers 1407.5037, arXiv.org, revised Apr 2015.
    9. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    10. Fa-Bin Shi & Xiao-Qian Sun & Jin-Hua Gao & Li Xu & Hua-Wei Shen & Xue-Qi Cheng, 2019. "Anomaly detection in Bitcoin market via price return analysis," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-11, June.
    11. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    12. Radu T. Pruna & Maria Polukarov & Nicholas R. Jennings, 2016. "A new structural stochastic volatility model of asset pricing and its stylized facts," Papers 1604.08824, arXiv.org.
    13. Stanislav S Borysov & Alexander V Balatsky, 2014. "Cross-Correlation Asymmetries and Causal Relationships between Stock and Market Risk," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    14. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    15. Filimonov, Vladimir & Sornette, Didier, 2015. "Power law scaling and “Dragon-Kings” in distributions of intraday financial drawdowns," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 27-45.
    16. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    17. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    18. Lautier, Delphine & Raynaud, Franck, 2011. "Statistical properties of derivatives: A journey in term structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2009-2019.
    19. Tetsuya Takaishi, 2016. "Dynamical cross-correlation of multiple time series Ising model," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 455-468, December.
    20. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:722-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.