IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v303y2021i1d10.1007_s10479-018-3120-8.html
   My bibliography  Save this article

A modularity-maximization-based approach for detecting multi-communities in social networks

Author

Listed:
  • Chen-Kun Tsung

    (National Chin-Yi University of Technology)

  • Sing-Ling Lee

    (National Chung Cheng University)

  • Hann-Jang Ho

    (WuFeng University)

  • ShengKai Chou

    (National Chung Cheng University)

Abstract

The modularity is a widely-used objective function to determine communities from a given network. The leading eigenvector method is a popular solution that applies the first eigenvector to determine the communities. The low computation cost is the major advantage of the leading eigenvector method. However, the leading eigenvector method only can split a network into two communities. To detect multiple communities, the modularity maximization is transformed to the vector partition problem (VPP). We propose an algorithm which is called as the partition at polar coordinate protocol (PPCP) to solve the VPP problem. The goal of PPCP is to find non-overlapping vertex vector sets so as to maximize the quadratic sum of the norms of community vectors. The proposed PPCP has two steps to determine the communities that are the network structure analysis and the community determination. During the network structure analysis, we obtain following issues. First, the vertex vectors belong to different communities can be separated by the distribution angles. Second, a node with a higher degree corresponds to a vertex vector with a larger norm. So, we propose three refinement functions including the noise reduction, the common-friends model and the strong connectivity hypothesis to improve the accuracy of PPCP. In our simulations, PPCP detects communities more precisely than Fine-tuned algorithm especially in the network with the weak structure. Moreover, the proposed refinement functions can capture the special properties of the network. So, PPCP with refinement functions performs much better than Fine-tuned algorithm and PPCP without refinement functions in terms of the accuracy in detecting communities.

Suggested Citation

  • Chen-Kun Tsung & Sing-Ling Lee & Hann-Jang Ho & ShengKai Chou, 2021. "A modularity-maximization-based approach for detecting multi-communities in social networks," Annals of Operations Research, Springer, vol. 303(1), pages 381-411, August.
  • Handle: RePEc:spr:annopr:v:303:y:2021:i:1:d:10.1007_s10479-018-3120-8
    DOI: 10.1007/s10479-018-3120-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3120-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3120-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Agarwal & D. Kempe, 2008. "Modularity-maximizing graph communities via mathematical programming," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(3), pages 409-418, December.
    2. Roger Guimerà & Luís A. Nunes Amaral, 2005. "Functional cartography of complex metabolic networks," Nature, Nature, vol. 433(7028), pages 895-900, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sukeda, Issey & Miyauchi, Atsushi & Takeda, Akiko, 2023. "A study on modularity density maximization: Column generation acceleration and computational complexity analysis," European Journal of Operational Research, Elsevier, vol. 309(2), pages 516-528.
    2. Xiang, Ju & Tang, Yan-Ni & Gao, Yuan-Yuan & Zhang, Yan & Deng, Ke & Xu, Xiao-Ke & Hu, Ke, 2015. "Multi-resolution community detection based on generalized self-loop rescaling strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 127-139.
    3. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Ponce, Diego & Puerto, Justo & Temprano, Francisco, 2024. "Mixed-integer linear programming formulations and column generation algorithms for the Minimum Normalized Cuts problem on networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 519-538.
    5. Liu, X. & Murata, T., 2010. "Advanced modularity-specialized label propagation algorithm for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1493-1500.
    6. Attila Mester & Andrei Pop & Bogdan-Eduard-Mădălin Mursa & Horea Greblă & Laura Dioşan & Camelia Chira, 2021. "Network Analysis Based on Important Node Selection and Community Detection," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    7. Nicholas S. Vonortas & Koichiro Okamura, 2013. "Network structure and robustness: lessons for research programme design," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 22(4), pages 392-411, June.
    8. Feng, Xiao & He, Shiwei & Li, Guangye & Chi, Jushang, 2021. "Transfer network of high-speed rail and aviation: Structure and critical components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    9. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Zhi, Danyue & Song, Dongdong & Chen, Yan & de Bok, Michiel & Tavasszy, Lóránt A. & Gao, Ziyou, 2023. "Uncovering and modeling the hierarchical organization of urban heavy truck flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    10. Wu, Jiaxin & Lu, Jing & Zhang, Lingye & Fan, Hanwen, 2024. "Spatial heterogeneity among different-sized port communities in directed-weighted global liner shipping network," Journal of Transport Geography, Elsevier, vol. 114(C).
    11. Vincent Labatut & Jean-Michel Balasque, 2012. "Detection and Interpretation of Communities in Complex Networks: Methods and Practical Application," Post-Print hal-00633653, HAL.
    12. Manikandan Narayanan & Adrian Vetta & Eric E Schadt & Jun Zhu, 2010. "Simultaneous Clustering of Multiple Gene Expression and Physical Interaction Datasets," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-13, April.
    13. Yazdanparast, Sakineh & Havens, Timothy C., 2017. "Modularity maximization using completely positive programming," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 20-32.
    14. Helena Osterholz & Stephanie Turner & Linda J. Alakangas & Eva-Lena Tullborg & Thorsten Dittmar & Birgitta E. Kalinowski & Mark Dopson, 2022. "Terrigenous dissolved organic matter persists in the energy-limited deep groundwaters of the Fennoscandian Shield," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Ursula A. Tooley & Aidan Latham & Jeanette K. Kenley & Dimitrios Alexopoulos & Tara A. Smyser & Ashley N. Nielsen & Lisa Gorham & Barbara B. Warner & Joshua S. Shimony & Jeffrey J. Neil & Joan L. Luby, 2024. "Prenatal environment is associated with the pace of cortical network development over the first three years of life," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Milena Oehlers & Benjamin Fabian, 2021. "Graph Metrics for Network Robustness—A Survey," Mathematics, MDPI, vol. 9(8), pages 1-48, April.
    17. Yau-Hua Yu & Hsu-Ko Kuo & Kuo-Wei Chang, 2008. "The Evolving Transcriptome of Head and Neck Squamous Cell Carcinoma: A Systematic Review," PLOS ONE, Public Library of Science, vol. 3(9), pages 1-11, September.
    18. Shen, Xin & Han, Yue & Li, Wenqian & Wong, Ka-Chun & Peng, Chengbin, 2021. "Finding core–periphery structures in large networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    19. Ayelet M. Rosenberg & Manish Saggar & Anna S. Monzel & Jack Devine & Peter Rogu & Aaron Limoges & Alex Junker & Carmen Sandi & Eugene V. Mosharov & Dani Dumitriu & Christoph Anacker & Martin Picard, 2023. "Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Dong Wang & Jiexun Li & Kaiquan Xu & Yizhen Wu, 2017. "Sentiment community detection: exploring sentiments and relationships in social networks," Electronic Commerce Research, Springer, vol. 17(1), pages 103-132, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:303:y:2021:i:1:d:10.1007_s10479-018-3120-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.