IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v44y2024i2d10.1007_s10669-024-09967-w.html
   My bibliography  Save this article

Systems analysis for energy assets of Iraq influenced by water scarcity

Author

Listed:
  • Megan C. Marcellin

    (University of Virginia)

  • Gigi Pavur

    (University of Virginia)

  • Davis C. Loose

    (University of Virginia)

  • John J. Cardenas

    (United States Agency for International Development)

  • David Denehy

    (United States Agency for International Development)

  • Mustafa Almashhadani

    (United States Agency for International Development)

  • Saddam Q. Waheed

    (Ministry of Water Resources)

  • Benjamin D. Trump

    (U.S. Army Corps of Engineers)

  • Thomas L. Polmateer

    (University of Virginia)

  • Igor Linkov

    (U.S. Army Corps of Engineers)

  • Venkataraman Lakshmi

    (University of Virginia)

  • James H. Lambert

    (University of Virginia
    University of Virginia)

Abstract

Water security in arid and semi-arid Middle Eastern climates has been severely impacted by effects of climate change such as reduced precipitation, diminished storage, increased evapotranspiration, and prolonged heat waves. These climate effects are compounded in Iraq, where populations, agriculture, industry, and energy rely heavily on varying transboundary water flows to meet water demands. Iraq’s most profitable sector, energy, is especially threatened by insufficient water supply, which complicates government decision making in energy infrastructure development. The goal of this paper is to develop a scenario-based multi-criteria analysis framework to prioritize infrastructure investments in the context of climate change and scarcity of natural resources. Infrastructure facilities are evaluated against social, economic, climate, and hydrologic criteria across a set of disruptive climatological, economic, and social scenarios to identify robust initiatives and the most and least disruptive scenarios to the system. A particular innovation of this paper is the evaluation of hydrology data derived from satellites in determining water scarcity impact on individual energy facilities. The methods are demonstrated for a critical sector of Iraq’s economy: oil and natural gas. The demonstration includes 13 system-order criteria, 44 oil and gas initiatives within Iraq, and seven risk scenarios. The results include an accounting of the most and least disruptive scenarios to energy sector priorities and scenario-based system orderings to guide stakeholders in investment prioritization.

Suggested Citation

  • Megan C. Marcellin & Gigi Pavur & Davis C. Loose & John J. Cardenas & David Denehy & Mustafa Almashhadani & Saddam Q. Waheed & Benjamin D. Trump & Thomas L. Polmateer & Igor Linkov & Venkataraman Laks, 2024. "Systems analysis for energy assets of Iraq influenced by water scarcity," Environment Systems and Decisions, Springer, vol. 44(2), pages 259-279, June.
  • Handle: RePEc:spr:envsyd:v:44:y:2024:i:2:d:10.1007_s10669-024-09967-w
    DOI: 10.1007/s10669-024-09967-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-024-09967-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-024-09967-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José Manuel Palma‐Oliveira & Benjamin D. Trump & Matthew D. Wood & Igor Linkov, 2018. "Community‐Driven Hypothesis Testing: A Solution for the Tragedy of the Anticommons," Risk Analysis, John Wiley & Sons, vol. 38(3), pages 620-634, March.
    2. Elizabeth B. Connelly & Lisa M. Colosi & Andres F. Clarens & James H. Lambert, 2015. "Risk Analysis of Biofuels Industry for Aviation with Scenario‐Based Expert Elicitation," Systems Engineering, John Wiley & Sons, vol. 18(2), pages 178-191, March.
    3. Heimir Thorisson & James H. Lambert & John J. Cardenas & Igor Linkov, 2017. "Resilience Analytics with Application to Power Grid of a Developing Region," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1268-1286, July.
    4. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    5. Michelle C. Hamilton & Shital A. Thekdi & Elisabeth M. Jenicek & Russell S. Harmon & Michael E. Goodsite & Michael P. Case & Christopher W. Karvetski & James H. Lambert, 2013. "Case studies of scenario analysis for adaptive management of natural resource and infrastructure systems," Environment Systems and Decisions, Springer, vol. 33(1), pages 89-103, March.
    6. Matthew J. Schroeder & James H. Lambert, 2011. "Scenario-based multiple criteria analysis for infrastructure policy impacts and planning," Journal of Risk Research, Taylor & Francis Journals, vol. 14(2), pages 191-214, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shital A. Thekdi & James H. Lambert, 2012. "Decision Analysis and Risk Models for Land Development Affecting Infrastructure Systems," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1253-1269, July.
    2. Heimir Thorisson & Marwan Alsultan & Daniel Hendrickson & Thomas L. Polmateer & James H. Lambert, 2019. "Addressing schedule disruptions in business processes of advanced logistics systems," Systems Engineering, John Wiley & Sons, vol. 22(1), pages 66-79, January.
    3. Hassler, Madison L. & Andrews, Daniel J. & Ezell, Barry C. & Polmateer, Thomas L. & Lambert, James H., 2020. "Multi-perspective scenario-based preferences in enterprise risk analysis of public safety wireless broadband network," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Shital A. Thekdi & Joost R. Santos, 2016. "Supply Chain Vulnerability Analysis Using Scenario‐Based Input‐Output Modeling: Application to Port Operations," Risk Analysis, John Wiley & Sons, vol. 36(5), pages 1025-1039, May.
    5. Hamilton, Michelle C. & Lambert, James H. & Connelly, Elizabeth B. & Barker, Kash, 2016. "Resilience analytics with disruption of preferences and lifecycle cost analysis for energy microgrids," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 11-21.
    6. Haowen You & Elizabeth B. Connelly & James H. Lambert & Andres F. Clarens, 2014. "Climate and other scenarios disrupt priorities in several management perspectives," Environment Systems and Decisions, Springer, vol. 34(4), pages 540-554, December.
    7. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    8. Chen, Fuzhong & Hsu, Chien-Lung & Lin, Arthur J. & Li, Haifeng, 2020. "Holding risky financial assets and subjective wellbeing: Empirical evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    9. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    10. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    11. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    12. Ortwin Renn & Andreas Klinke, 2013. "A Framework of Adaptive Risk Governance for Urban Planning," Sustainability, MDPI, vol. 5(5), pages 1-24, May.
    13. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    14. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
    15. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    16. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    17. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    18. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    19. Julie E. Shortridge & Benjamin F. Zaitchik, 2018. "Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections," Climatic Change, Springer, vol. 151(3), pages 525-539, December.
    20. Yacov Y. Haimes, 2006. "On the Definition of Vulnerabilities in Measuring Risks to Infrastructures," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 293-296, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:44:y:2024:i:2:d:10.1007_s10669-024-09967-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.