IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v37y2017i1d10.1007_s10669-017-9625-x.html
   My bibliography  Save this article

Tree seedling establishment in dry tropics: an urgent need of interaction studies

Author

Listed:
  • Rahul Bhadouria

    (Banaras Hindu University)

  • Pratap Srivastava

    (Banaras Hindu University)

  • Rishikesh Singh

    (Banaras Hindu University)

  • Sachchidanand Tripathi

    (University of Delhi)

  • Hema Singh

    (Banaras Hindu University)

  • A. S. Raghubanshi

    (Banaras Hindu University)

Abstract

The current anthropogenic activities and climate change are increasingly becoming a growing global concern for dry tropical forests. Worldwide, these ecologically important forests have degraded considerably since the past few decades due to such factors. These factors have harmful consequences on the vegetation structure and diversity especially tree seedlings, which may further aggravate climate change. Generally, the vegetation recovery is very slow and unpredictable in the dry tropics due to complex interaction among tree seedling, site (particularly, soil) and climatic conditions. We inculcated that a better understanding of the behavior of individuals of different tree species at seedling stage in dry forests is of immense importance. It is increasingly being recognized for explaining and managing the future composition of plant communities under changing environmental conditions. In this regard, the multi-factorial interaction studies under various resource–disturbance combinations are needed in dry tropical ecosystems to understand the: (1) impact of relative variability in resources and disturbances on the responses of tree seedlings of native species and (2) how the later relates to distinct functional and life history traits of the individual tree species. Most importantly, such studies would improve our limited understanding of how variation (natural and man-made) in nutrient availability, under the influence of other local environmental factors (such as water, light, grass competition, herbivory, fire, allelopathy and enhanced CO2 conditions), would affect the dynamics of dry tropical forest community. It may help in the proper management of these forests. Moreover, it may prove helpful in the current climate change scenario, as change in forest community dynamics may have consequences on soil C sequestration and CO2 efflux at global scale.

Suggested Citation

  • Rahul Bhadouria & Pratap Srivastava & Rishikesh Singh & Sachchidanand Tripathi & Hema Singh & A. S. Raghubanshi, 2017. "Tree seedling establishment in dry tropics: an urgent need of interaction studies," Environment Systems and Decisions, Springer, vol. 37(1), pages 88-100, March.
  • Handle: RePEc:spr:envsyd:v:37:y:2017:i:1:d:10.1007_s10669-017-9625-x
    DOI: 10.1007/s10669-017-9625-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-017-9625-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-017-9625-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Sagar & A. Pandey & J. S. Singh, 2012. "Composition, species diversity, and biomass of the herbaceous community in dry tropical forest of northern India in relation to soil moisture and light intensity," Environment Systems and Decisions, Springer, vol. 32(4), pages 485-493, December.
    2. Bettina M. J. Engelbrecht & Liza S. Comita & Richard Condit & Thomas A. Kursar & Melvin T. Tyree & Benjamin L. Turner & Stephen P. Hubbell, 2007. "Drought sensitivity shapes species distribution patterns in tropical forests," Nature, Nature, vol. 447(7140), pages 80-82, May.
    3. Michael J. O’Brien & Sebastian Leuzinger & Christopher D. Philipson & John Tay & Andy Hector, 2014. "Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels," Nature Climate Change, Nature, vol. 4(8), pages 710-714, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Alexander Thompson & Henry D. Adams & David D. Breshears & Adam D. Collins & L. Turin Dickman & Charlotte Grossiord & Àngela Manrique‐Alba & Drew M. Peltier & Michael G. Ryan & Amy M. Trowbridge & , 2023. "No carbon storage in growth-limited trees in a semi-arid woodland," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Haoze Zhang & Mingliang Gao & Fuying Liu & Huabin Yuan & Zhendong Liu & Mingming Zhang & Quanqi Li & Rui Zong, 2024. "Characteristic of soil moisture utilisation with different water-sensitive cultivars of summer maize in the North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(4), pages 210-219.
    3. Maclean, Ilya M.D. & Bennie, Jonathan J. & Scott, Amanda J. & Wilson, Robert J., 2012. "A high-resolution model of soil and surface water conditions," Ecological Modelling, Elsevier, vol. 237, pages 109-119.
    4. Elodie Allié & Raphaël Pélissier & Julien Engel & Pascal Petronelli & Vincent Freycon & Vincent Deblauwe & Laure Soucémarianadin & Jean Weigel & Christopher Baraloto, 2015. "Pervasive Local-Scale Tree-Soil Habitat Association in a Tropical Forest Community," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-16, November.
    5. Sangsan Phumsathan & Kunanon Daonurai & Ekaphan Kraichak & Sarawood Sungkaew & Atchara Teerawatananon & Nantachai Pongpattananurak, 2022. "Effects of Fire on Diversity and Aboveground Biomass of Understory Communities in Seasonally Dry Tropical Forest in Western Thailand," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    6. repec:caa:jnlpse:v:preprint:id:401-2023-pse is not listed on IDEAS
    7. Haoyu Qiu & Qin Yan & Yuchuan Yang & Xu Huang & Jinmei Wang & Jiajie Luo & Lang Peng & Ge Bai & Liuyue Zhang & Rui Zhang & Yongshuo H. Fu & Chaoyang Wu & Josep Peñuelas & Lei Chen, 2024. "Flowering in the Northern Hemisphere is delayed by frost after leaf-out," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Liu, Qiuyu & Peng, Changhui & Schneider, Robert & Cyr, Dominic & Liu, Zelin & Zhou, Xiaolu & Kneeshaw, Daniel, 2021. "TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    9. Lindh, Magnus & Zhang, Lai & Falster, Daniel & Franklin, Oskar & Brännström, Åke, 2014. "Plant diversity and drought: The role of deep roots," Ecological Modelling, Elsevier, vol. 290(C), pages 85-93.
    10. de Assis Prado, Carlos Henrique Britto & de Brito Melo Trovão, Dilma Maria, 2023. "The woody crown network model incorporates maximum height," Ecological Modelling, Elsevier, vol. 481(C).
    11. Laura A Schreeg & W John Kress & David L Erickson & Nathan G Swenson, 2010. "Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    12. Bing Wang & Fenxiang Wen & Jiangtao Wu & Xiaojun Wang & Yani Hu, 2014. "Vertical Profiles of Soil Water Content as Influenced by Environmental Factors in a Small Catchment on the Hilly-Gully Loess Plateau," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    13. Kishor Prasad Bhatta & Anisha Aryal & Himlal Baral & Sujan Khanal & Amul Kumar Acharya & Chanthavone Phomphakdy & Rinzin Dorji, 2021. "Forest Structure and Composition under Contrasting Precipitation Regimes in the High Mountains, Western Nepal," Sustainability, MDPI, vol. 13(13), pages 1-23, July.
    14. Duan Li & Jianhua Si & Xiaoyou Zhang & Yayu Gao & Huan Luo & Jie Qin & Guanlong Gao, 2019. "Comparison of Branch Water Relations in Two Riparian Species: Populus euphratica and Tamarix ramosissima," Sustainability, MDPI, vol. 11(19), pages 1-14, October.
    15. Pablo Imbach & Megan Beardsley & Claudia Bouroncle & Claudia Medellin & Peter Läderach & Hugo Hidalgo & Eric Alfaro & Jacob Etten & Robert Allan & Debbie Hemming & Roger Stone & Lee Hannah & Camila I., 2017. "Climate change, ecosystems and smallholder agriculture in Central America: an introduction to the special issue," Climatic Change, Springer, vol. 141(1), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:37:y:2017:i:1:d:10.1007_s10669-017-9625-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.