IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v237-238y2012ip109-119.html
   My bibliography  Save this article

A high-resolution model of soil and surface water conditions

Author

Listed:
  • Maclean, Ilya M.D.
  • Bennie, Jonathan J.
  • Scott, Amanda J.
  • Wilson, Robert J.

Abstract

Soil moisture and surface water conditions are key determinants of plant community composition and ecosystem function, and predicting such conditions is an important step in understanding the ecological consequences of environmental change. Typically, hydrological models that use real landscape features do not simulate water conditions at the fine spatial and temporal scales that are meaningful to many plant species and ecological processes. We present a hydrological model that simulates daily soil moisture and surface water conditions at a spatial resolution of 1m×1m. The model is applied to 16km2 of the Lizard Peninsula, UK. The model is kept computationally efficient by combining a simple lumped parameter basin approach with the distributed hydrological effects of basin topography. We also model the complex flows occurring between small basins. Code for running the model using R statistical software is provided as supplementary material. As inputs, the model uses widely available daily weather variables, 1m×1m resolution digital elevation data (LiDAR) and some simple vegetation and soil characteristics identifiable from aerial photographs. Our results indicate that when inter-basin water exchanges and the distributed effects of topography within each basin are not accounted for, the model performs less well than just assuming average conditions in time or space. However, modelling inter-basin water flow also substantially increases computer run-time. The full model is capable of correctly simulating a broad range of hydrological and soil moisture conditions, providing accurate predictions for areas that range from permanently wet through to permanently dry, as well as for ephemeral wetlands with highly variable water levels. We discuss some potential ecological applications of the model, for example in guiding conservation management.

Suggested Citation

  • Maclean, Ilya M.D. & Bennie, Jonathan J. & Scott, Amanda J. & Wilson, Robert J., 2012. "A high-resolution model of soil and surface water conditions," Ecological Modelling, Elsevier, vol. 237, pages 109-119.
  • Handle: RePEc:eee:ecomod:v:237-238:y:2012:i::p:109-119
    DOI: 10.1016/j.ecolmodel.2012.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012001457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bettina M. J. Engelbrecht & Liza S. Comita & Richard Condit & Thomas A. Kursar & Melvin T. Tyree & Benjamin L. Turner & Stephen P. Hubbell, 2007. "Drought sensitivity shapes species distribution patterns in tropical forests," Nature, Nature, vol. 447(7140), pages 80-82, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sébastien Rapinel & Nicolas Rossignol & Oliver Gore & Olivier Jambon & Guillaume Bouger & Jérome Mansons & Anne Bonis, 2018. "Daily Monitoring of Shallow and Fine-Grained Water Patterns in Wet Grasslands Combining Aerial LiDAR Data and In Situ Piezometric Measurements," Sustainability, MDPI, vol. 10(3), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura A Schreeg & W John Kress & David L Erickson & Nathan G Swenson, 2010. "Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    2. Haoze Zhang & Mingliang Gao & Fuying Liu & Huabin Yuan & Zhendong Liu & Mingming Zhang & Quanqi Li & Rui Zong, 2024. "Characteristic of soil moisture utilisation with different water-sensitive cultivars of summer maize in the North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(4), pages 210-219.
    3. Rahul Bhadouria & Pratap Srivastava & Rishikesh Singh & Sachchidanand Tripathi & Hema Singh & A. S. Raghubanshi, 2017. "Tree seedling establishment in dry tropics: an urgent need of interaction studies," Environment Systems and Decisions, Springer, vol. 37(1), pages 88-100, March.
    4. Elodie Allié & Raphaël Pélissier & Julien Engel & Pascal Petronelli & Vincent Freycon & Vincent Deblauwe & Laure Soucémarianadin & Jean Weigel & Christopher Baraloto, 2015. "Pervasive Local-Scale Tree-Soil Habitat Association in a Tropical Forest Community," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-16, November.
    5. Bing Wang & Fenxiang Wen & Jiangtao Wu & Xiaojun Wang & Yani Hu, 2014. "Vertical Profiles of Soil Water Content as Influenced by Environmental Factors in a Small Catchment on the Hilly-Gully Loess Plateau," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    6. Kishor Prasad Bhatta & Anisha Aryal & Himlal Baral & Sujan Khanal & Amul Kumar Acharya & Chanthavone Phomphakdy & Rinzin Dorji, 2021. "Forest Structure and Composition under Contrasting Precipitation Regimes in the High Mountains, Western Nepal," Sustainability, MDPI, vol. 13(13), pages 1-23, July.
    7. repec:caa:jnlpse:v:preprint:id:401-2023-pse is not listed on IDEAS
    8. Duan Li & Jianhua Si & Xiaoyou Zhang & Yayu Gao & Huan Luo & Jie Qin & Guanlong Gao, 2019. "Comparison of Branch Water Relations in Two Riparian Species: Populus euphratica and Tamarix ramosissima," Sustainability, MDPI, vol. 11(19), pages 1-14, October.
    9. Pablo Imbach & Megan Beardsley & Claudia Bouroncle & Claudia Medellin & Peter Läderach & Hugo Hidalgo & Eric Alfaro & Jacob Etten & Robert Allan & Debbie Hemming & Roger Stone & Lee Hannah & Camila I., 2017. "Climate change, ecosystems and smallholder agriculture in Central America: an introduction to the special issue," Climatic Change, Springer, vol. 141(1), pages 1-12, March.
    10. Lindh, Magnus & Zhang, Lai & Falster, Daniel & Franklin, Oskar & Brännström, Åke, 2014. "Plant diversity and drought: The role of deep roots," Ecological Modelling, Elsevier, vol. 290(C), pages 85-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:237-238:y:2012:i::p:109-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.