IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37577-8.html
   My bibliography  Save this article

No carbon storage in growth-limited trees in a semi-arid woodland

Author

Listed:
  • R. Alexander Thompson

    (Washington State University)

  • Henry D. Adams

    (Washington State University)

  • David D. Breshears

    (University of Arizona)

  • Adam D. Collins

    (Earth & Environmental Sciences Division)

  • L. Turin Dickman

    (Earth & Environmental Sciences Division)

  • Charlotte Grossiord

    (Civil and Environmental Engineering, EPFL
    Snow and Landscape WSL)

  • Àngela Manrique‐Alba

    (Estación Experimental Aula Dei (EEAD-CSIC))

  • Drew M. Peltier

    (Northern Arizona University)

  • Michael G. Ryan

    (Colorado State University
    Rocky Mountain Research Station)

  • Amy M. Trowbridge

    (University of Wisconsin)

  • Nate G. McDowell

    (Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab
    Washington State University)

Abstract

Plant survival depends on a balance between carbon supply and demand. When carbon supply becomes limited, plants buffer demand by using stored carbohydrates (sugar and starch). During drought, NSCs (non-structural carbohydrates) may accumulate if growth stops before photosynthesis. This expectation is pervasive, yet few studies have combined simultaneous measurements of drought, photosynthesis, growth, and carbon storage to test this. Using a field experiment with mature trees in a semi-arid woodland, we show that growth and photosynthesis slow in parallel as $${\psi }_{{pd}}$$ ψ p d declines, preventing carbon storage in two species of conifer (J. monosperma and P. edulis). During experimental drought, growth and photosynthesis were frequently co-limited. Our results point to an alternative perspective on how plants use carbon that views growth and photosynthesis as independent processes both regulated by water availability.

Suggested Citation

  • R. Alexander Thompson & Henry D. Adams & David D. Breshears & Adam D. Collins & L. Turin Dickman & Charlotte Grossiord & Àngela Manrique‐Alba & Drew M. Peltier & Michael G. Ryan & Amy M. Trowbridge & , 2023. "No carbon storage in growth-limited trees in a semi-arid woodland," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37577-8
    DOI: 10.1038/s41467-023-37577-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37577-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37577-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael J. O’Brien & Sebastian Leuzinger & Christopher D. Philipson & John Tay & Andy Hector, 2014. "Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels," Nature Climate Change, Nature, vol. 4(8), pages 710-714, August.
    2. N. G. McDowell & A. P. Williams & C. Xu & W. T. Pockman & L. T. Dickman & S. Sevanto & R. Pangle & J. Limousin & J. Plaut & D. S. Mackay & J. Ogee & J. C. Domec & C. D. Allen & R. A. Fisher & X. Jiang, 2016. "Multi-scale predictions of massive conifer mortality due to chronic temperature rise," Nature Climate Change, Nature, vol. 6(3), pages 295-300, March.
    3. N. G. McDowell & A. P. Williams & C. Xu & W. T. Pockman & L. T. Dickman & S. Sevanto & R. Pangle & J. Limousin & J. Plaut & D. S. Mackay & J. Ogee & J. C. Domec & C. D. Allen & R. A. Fisher & X. Jiang, 2016. "Addendum: Multi-scale predictions of massive conifer mortality due to chronic temperature rise," Nature Climate Change, Nature, vol. 6(11), pages 1048-1048, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William M. Hammond & A. Park Williams & John T. Abatzoglou & Henry D. Adams & Tamir Klein & Rosana López & Cuauhtémoc Sáenz-Romero & Henrik Hartmann & David D. Breshears & Craig D. Allen, 2022. "Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    3. Liu, Qiuyu & Peng, Changhui & Schneider, Robert & Cyr, Dominic & Liu, Zelin & Zhou, Xiaolu & Kneeshaw, Daniel, 2021. "TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    4. Rahul Bhadouria & Pratap Srivastava & Rishikesh Singh & Sachchidanand Tripathi & Hema Singh & A. S. Raghubanshi, 2017. "Tree seedling establishment in dry tropics: an urgent need of interaction studies," Environment Systems and Decisions, Springer, vol. 37(1), pages 88-100, March.
    5. Guadagno, C.R. & Millar, D. & Lai, R. & Mackay, D.S. & Pleban, J.R. & McClung, C.R. & Weinig, C. & Wang, D.R. & Ewers, B.E., 2020. "Use of transcriptomic data to inform biophysical models via Bayesian networks," Ecological Modelling, Elsevier, vol. 429(C).
    6. de Assis Prado, Carlos Henrique Britto & de Brito Melo Trovão, Dilma Maria, 2023. "The woody crown network model incorporates maximum height," Ecological Modelling, Elsevier, vol. 481(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37577-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.