IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v34y2014i3d10.1007_s10669-014-9508-3.html
   My bibliography  Save this article

Protecting asset value and driving performance with a dynamic, risk-based contingency fund

Author

Listed:
  • C. W. Mauelshagen

    (Cranfield University)

  • S. J. T. Pollard

    (Cranfield University)

  • D. Owen

    (Yorkshire Water Services)

  • S. Herndlhofer

    (Yorkshire Water Services)

  • P. Firth

    (Yorkshire Water Services)

  • J. McKenna

    (Yorkshire Water Services)

  • N. Bingley

    (Yorkshire Water Services)

  • P. Jenson

    (Yorkshire Water Services)

Abstract

We present a risk-based contingency fund management methodology to mitigate the impact of external risks on asset value and performance. Many asset intensive industries, such as water and energy utilities, are significantly affected by external risks such as extreme weather events. We put the case for a centrally held risk-based contingency fund that would mitigate against ‘medium’ impact ‘medium’ probability events that fall outside of large losses covered by insurance and smaller ‘normal’ operating losses. Our risk-based contingency approach is appropriate for short-term business planning (1–5 years) and would complement longer term planning, for example climate change adaptation and mitigation strategies. Our approach offers a risk-based methodology to manage contingency that is explicit and defensible. Critically, our methodology allows contingency to be managed dynamically as risk probabilities and impacts change, creating a mechanism for contingency funds to be periodically released if risk exposure reduces. The long-term benefit of dynamic, risk-based contingency is to reduce the impact of external risks and support long-term sustainability.

Suggested Citation

  • C. W. Mauelshagen & S. J. T. Pollard & D. Owen & S. Herndlhofer & P. Firth & J. McKenna & N. Bingley & P. Jenson, 2014. "Protecting asset value and driving performance with a dynamic, risk-based contingency fund," Environment Systems and Decisions, Springer, vol. 34(3), pages 417-424, September.
  • Handle: RePEc:spr:envsyd:v:34:y:2014:i:3:d:10.1007_s10669-014-9508-3
    DOI: 10.1007/s10669-014-9508-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-014-9508-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-014-9508-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eti, M.C. & Ogaji, S.O.T. & Probert, S.D., 2006. "Reducing the cost of preventive maintenance (PM) through adopting a proactive reliability-focused culture," Applied Energy, Elsevier, vol. 83(11), pages 1235-1248, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Linkov & James H. Lambert & Zachary A. Collier, 2014. "Introduction to the inaugural general issue of environment systems and decisions," Environment Systems and Decisions, Springer, vol. 34(3), pages 367-368, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ameena Saad Al-Sumaiti & Abdollah Kavousi-Fard & Magdy Salama & Motahareh Pourbehzadi & Srikanth Reddy & Muhammad Babar Rasheed, 2020. "Economic Assessment of Distributed Generation Technologies: A Feasibility Study and Comparison with the Literature," Energies, MDPI, vol. 13(11), pages 1-28, June.
    2. Adherbal Caminada Netto & Arthur Henrique de Andrade Melani & Carlos Alberto Murad & Miguel Angelo de Carvalho Michalski & Gilberto Francisco Martha de Souza & Silvio Ikuyo Nabeta, 2020. "A Novel Approach to Defining Maintenance Significant Items: A Hydro Generator Case Study," Energies, MDPI, vol. 13(23), pages 1-20, November.
    3. Priyank Srivastava & Dinesh Khanduja & Subramaniam Ganesan, 2020. "Fuzzy methodology application for risk analysis of mechanical system in process industry," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 297-312, April.
    4. Priyank Srivastava & Dinesh Khanduja & V. P. Agrawal, 2020. "Agile maintenance attribute coding and evaluation based decision making in sugar manufacturing plant," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 553-583, June.
    5. Sharafali, Moosa & Tarakci, Hakan & Kulkarni, Shailesh & Razack Shahul Hameed, Raja Abdul, 2019. "Optimal delivery due date for a supplier with an unreliable machine under outsourced maintenance," International Journal of Production Economics, Elsevier, vol. 208(C), pages 53-68.
    6. Martínez, E. & Jiménez, E. & Blanco, J. & Sanz, F., 2010. "LCA sensitivity analysis of a multi-megawatt wind turbine," Applied Energy, Elsevier, vol. 87(7), pages 2293-2303, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:34:y:2014:i:3:d:10.1007_s10669-014-9508-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.