IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i11d10.1007_s10668-023-03852-3.html
   My bibliography  Save this article

Water scarcity assessment in Iran’s agricultural sector using the water footprint concept

Author

Listed:
  • Shahla Dehghanpir

    (University of Hormozgan)

  • Ommolbanin Bazrafshan

    (University of Hormozgan)

  • Hadi Ramezani Etedali

    (Imam Khomeini International University)

  • Arashk Holisaz

    (University of Agricultural Sciences and Natural Resources)

  • Brian Collins

    (James Cook University)

Abstract

The adoption of the water footprint concept and its application in assessing water stress can provide valuable insights into the sustainable use of water resources in agricultural production. The objective of the present study is to calculate the agricultural water stress index (AWSI) using the water footprint framework and water scarcity indices, namely blue water scarcity (BWS), water stress index (WSI), water self-sufficiency (WSS), water dependency (WD), and water poverty (WP) indices in Iran’s agricultural sector during the period of 2008–2019. Subsequently, the spatiotemporal patterns of water scarcity indices were examined at both the provincial and national levels. The findings reveal that the agricultural water footprint (AWF) amounted to approximately 195.6 Gm3, with AWFblue, AWFgreen, and AWFgray accounting for 85.2%, 6.9%, and 7.9%, respectively. The average national AWSI was estimated to be 0.94, indicating a state of extreme stress, and exhibiting an upward trend from 2012 to 2019. The southern and central regions, notably Yazd, Kerman, Tehran, and Hormozgan, have experienced severe and extreme water stress (AWSI > 1.38). Conversely, the humid and Mediterranean regions in the north, northwest, and west of Iran experience varying degrees of low to moderate water scarcity. Nevertheless, the western region (West Azerbaijan) and the northwest region (Zanjan and Hamedan) have transitioned from a state of moderate stress to a high-stress category (AWSI > 0.6). Based on the results, regions where BWS BWS > WSI, the significant diversity of agricultural products has contributed to an increase in WP and WSS, along with a decrease in WD. The AWSI, based on the water footprint concept, proves to be more suitable for reflecting regional water scarcity compared to existing water stress indices, particularly in arid and semi-arid agricultural production regions, due to the demonstrated environmental impacts of sustainable agricultural production.

Suggested Citation

  • Shahla Dehghanpir & Ommolbanin Bazrafshan & Hadi Ramezani Etedali & Arashk Holisaz & Brian Collins, 2024. "Water scarcity assessment in Iran’s agricultural sector using the water footprint concept," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28995-29020, November.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:11:d:10.1007_s10668-023-03852-3
    DOI: 10.1007/s10668-023-03852-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03852-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03852-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dourte, Daniel R. & Fraisse, Clyde W. & Uryasev, Oxana, 2014. "WaterFootprint on AgroClimate: A dynamic, web-based tool for comparing agricultural systems," Agricultural Systems, Elsevier, vol. 125(C), pages 33-41.
    2. Ababaei, Behnam & Ramezani Etedali, Hadi, 2017. "Water footprint assessment of main cereals in Iran," Agricultural Water Management, Elsevier, vol. 179(C), pages 401-411.
    3. Bazrafshan, Ommolbanin & Ramezani Etedali, Hadi & Gerkani Nezhad Moshizi, Zahra & Shamili, Mansoureh, 2019. "Virtual water trade and water footprint accounting of Saffron production in Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 368-374.
    4. Samaneh Ashraf & Amir AghaKouchak & Ali Nazemi & Ali Mirchi & Mojtaba Sadegh & Hamed R. Moftakhari & Elmira Hassanzadeh & Chi-Yuan Miao & Kaveh Madani & Mohammad Mousavi Baygi & Hassan Anjileli & Davo, 2019. "Compounding effects of human activities and climatic changes on surface water availability in Iran," Climatic Change, Springer, vol. 152(3), pages 379-391, March.
    5. Seyed Reza Es’haghi & Hamid Karimi & Amirreza Rezaei & Pouria Ataei, 2022. "Content Analysis of the Problems and Challenges of Agricultural Water Use: A Case Study of Lake Urmia Basin at Miandoab, Iran," SAGE Open, , vol. 12(2), pages 21582440221, April.
    6. Kaveh Madani, 2014. "Water management in Iran: what is causing the looming crisis?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(4), pages 315-328, December.
    7. Bazrafshan, Ommolbanin & Zamani, Hossein & Ramezanietedli, Hadi & Gerkaninezhad Moshizi, Zahra & Shamili, Mansoureh & Ismaelpour, Yahya & Gholami, Hamid, 2020. "Improving water management in date palms using economic value of water footprint and virtual water trade concepts in Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    8. Xiao-jun Wang & Jian-yun Zhang & Jiu-fu Liu & Guo-qing Wang & Rui-min He & Amgad Elmahdi & Sondoss Elsawah, 2011. "Water resources planning and management based on system dynamics: a case study of Yulin city," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(2), pages 331-351, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bazrafshan, Ommolbanin & Zamani, Hossein & Ramezanietedli, Hadi & Gerkaninezhad Moshizi, Zahra & Shamili, Mansoureh & Ismaelpour, Yahya & Gholami, Hamid, 2020. "Improving water management in date palms using economic value of water footprint and virtual water trade concepts in Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Kaveh Madani, 2021. "Have International Sanctions Impacted Iran’s Environment?," World, MDPI, vol. 2(2), pages 1-22, April.
    3. Rouzaneh, Davoud & Yazdanpanah, Masoud & Jahromi, Arman Bakhshi, 2021. "Evaluating micro-irrigation system performance through assessment of farmers' satisfaction: implications for adoption, longevity, and water use efficiency," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Bazrafshan, Ommolbanin & Ramezani Etedali, Hadi & Gerkani Nezhad Moshizi, Zahra & Shamili, Mansoureh, 2019. "Virtual water trade and water footprint accounting of Saffron production in Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 368-374.
    5. Cao, Xinchun & Cui, Simeng & Shu, Rui & Wu, Mengyang, 2020. "Misestimation of water saving in agricultural virtual water trade by not considering the role of irrigation," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Mehdi Ketabchy, 2021. "Investigating the Impacts of the Political System Components in Iran on the Existing Water Bankruptcy," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    7. GhassemiSahebi, Fakhroddin & Mohammadrezapour, Omolbani & Delbari, Masoomeh & KhasheiSiuki, Abbas & Ritzema, Henk & Cherati, Ali, 2020. "Effect of utilization of treated wastewater and seawater with Clinoptilolite-Zeolite on yield and yield components of sorghum," Agricultural Water Management, Elsevier, vol. 234(C).
    8. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    10. Forough Jafary & Chris Bradley, 2018. "Groundwater Irrigation Management and the Existing Challenges from the Farmers’ Perspective in Central Iran," Land, MDPI, vol. 7(1), pages 1-21, January.
    11. Momeni, Marzieh & Zakeri, Zahra & Esfandiari, Mojtaba & Behzadian, Kourosh & Zahedi, Sina & Razavi, Vahid, 2019. "Comparative analysis of agricultural water pricing between Azarbaijan Provinces in Iran and the state of California in the US: A hydro-economic approach," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Muhammad Kamangar & Ozgur Kisi & Masoud Minaei, 2023. "Spatio-Temporal Analysis of Carbon Sequestration in Different Ecosystems of Iran and Its Relationship with Agricultural Droughts," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    13. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    14. Razmavaran, Mohammad Hadi & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2024. "Water footprint and production of rain-fed saffron under different planting methods with ridge plastic mulch and pre-flowering irrigation in a semi-arid region," Agricultural Water Management, Elsevier, vol. 291(C).
    15. Majid Mohammadi & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2019. "Investigation of a New Hybrid Optimization Algorithm Performance in the Optimal Operation of Multi-Reservoir Benchmark Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4767-4782, November.
    16. Alireza Taghdisian & Sandra G. F. Bukkens & Mario Giampietro, 2022. "A Societal Metabolism Approach to Effectively Analyze the Water–Energy–Food Nexus in an Agricultural Transboundary River Basin," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    17. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    19. Sharafi, Saeed & Nahvinia, Mohammad Javad, 2024. "Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions," Agricultural Water Management, Elsevier, vol. 299(C).
    20. Shiva Noori & Gijsbert Korevaar & Andrea Ramirez Ramirez, 2020. "Institutional Lens upon Industrial Symbiosis Dynamics: The case of Persian Gulf Mining and Metal Industries Special Economic Zone," Sustainability, MDPI, vol. 12(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:11:d:10.1007_s10668-023-03852-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.