IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i8d10.1007_s10668-022-02416-1.html
   My bibliography  Save this article

Analysis of land use and land cover changes and their impact on temperature using landsat satellite imageries

Author

Listed:
  • Rubeena Vohra

    (Bharati Vidyapeeth’s College of Engineering (BVCOE))

  • K. C. Tiwari

    (Delhi Technological University)

Abstract

Urban growth and the changing scenario of Land Use and Land Cover (LULC) have been an increasing trend in both towns and cities. The higher rate of transformation from non-built up land to the impervious area becomes a warning symbol of Land surface temperature variations. In this study, an attempt has been made to determine the transition of natural land area and its impact on Land surface temperature (LST) in Vellore district, Tamil Nadu, India. According to the current statistics, the study area records the hottest climate crossing 40° mark in recent years. This is mainly due to the minimum rainfall, the ground level is 200 m just above the sea level, and the pollution caused by tanneries. Landsat imageries are collected for three different years 1994, 2002, and 2018 that map the LULC into agricultural, water bodies, built-up land, and barren land classes. The major purpose of this research is to (i) analyze changes of LULC in and around Vellore city, (ii) categorize the images into various classes like vegetative and non-vegetative land, (iii) Assessment of Spatio-temporal variations in LST and link with classes and urbanization growth using satellite images. The LULC impact on LST is analyzed with the widely used Getis–Ord statistics. The simulation result shows that the built-up area raises to 81%, vegetation land decline by about −65% for the years 1994–2018 respectively. It is observed that LST has attained the highest degree in the built-up class due to the unplanned LULC changes and the conversion of built-up areas. The overall accuracy is achieved at about 92, 89, and 91% for three different years respectively. Based on the obtained result, this can be adopted for the development of rural, and urban areas in the coming future.

Suggested Citation

  • Rubeena Vohra & K. C. Tiwari, 2023. "Analysis of land use and land cover changes and their impact on temperature using landsat satellite imageries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8623-8650, August.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:8:d:10.1007_s10668-022-02416-1
    DOI: 10.1007/s10668-022-02416-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02416-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02416-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nayak, Sridhara & Mandal, Manabottam, 2019. "Impact of land use and land cover changes on temperature trends over India," Land Use Policy, Elsevier, vol. 89(C).
    2. Siddique Ullah & Adnan Ahmad Tahir & Tahir Ali Akbar & Quazi K. Hassan & Ashraf Dewan & Asim Jahangir Khan & Mudassir Khan, 2019. "Remote Sensing-Based Quantification of the Relationships between Land Use Land Cover Changes and Surface Temperature over the Lower Himalayan Region," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
    3. Sandeep Thakur & Debapriya Maity & Ismail Mondal & Ganesh Basumatary & Phani Bhushan Ghosh & Papita Das & Tarun Kumar De, 2021. "Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1917-1943, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auwalu Faisal Koko & Yue Wu & Ghali Abdullahi Abubakar & Akram Ahmed Noman Alabsi & Roknisadeh Hamed & Muhammed Bello, 2021. "Thirty Years of Land Use/Land Cover Changes and Their Impact on Urban Climate: A Study of Kano Metropolis, Nigeria," Land, MDPI, vol. 10(11), pages 1-27, October.
    2. Sridhara Nayak & Suman Maity & Kuvar S. Singh & Hara Prasad Nayak & Soma Dutta, 2021. "Influence of the Changes in Land-Use and Land Cover on Temperature over Northern and North-Eastern India," Land, MDPI, vol. 10(1), pages 1-13, January.
    3. Muhammad Amir Siddique & Fan Boqing & Liu Dongyun, 2023. "Modeling the Impact and Risk Assessment of Urbanization on Urban Heat Island and Thermal Comfort Level of Beijing City, China (2005–2020)," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    4. Kumar Ashwini & Briti Sundar Sil & Abdulla Al Kafy & Hamad Ahmed Altuwaijri & Hrithik Nath & Zullyadini A. Rahaman, 2024. "Harnessing Machine Learning Algorithms to Model the Association between Land Use/Land Cover Change and Heatwave Dynamics for Enhanced Environmental Management," Land, MDPI, vol. 13(8), pages 1-30, August.
    5. Netrananda Sahu & Atul Saini & Swadhin Behera & Takahiro Sayama & Sridhara Nayak & Limonlisa Sahu & Weili Duan & Ram Avtar & Masafumi Yamada & R. B. Singh & Kaoru Takara, 2020. "Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    6. Guste Metrikaityte & Jurate Suziedelyte Visockiene & Kestutis Papsys, 2022. "Digital Mapping of Land Cover Changes Using the Fusion of SAR and MSI Satellite Data," Land, MDPI, vol. 11(7), pages 1-20, July.
    7. Jinxiu Liu & Weihao Shen & Yaqian He, 2021. "Effects of Cropland Expansion on Temperature Extremes in Western India from 1982 to 2015," Land, MDPI, vol. 10(5), pages 1-17, May.
    8. Alademomi Alfred S. & Okolie Chukwuma J. & Daramola Olagoke E. & Agboola Raphael O. & Salami Tosin J., 2020. "Assessing the Relationship of LST, NDVI and EVI with Land Cover Changes in the Lagos Lagoon Environment," Quaestiones Geographicae, Sciendo, vol. 39(3), pages 87-109, September.
    9. Hameeda Sultan & Jinyan Zhan & Wajid Rashid & Xi Chu & Eve Bohnett, 2022. "Systematic Review of Multi-Dimensional Vulnerabilities in the Himalayas," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    10. Khun La Yaung & Amnat Chidthaisong & Atsamon Limsakul & Pariwate Varnakovida & Can Trong Nguyen, 2021. "Land Use Land Cover Changes and Their Effects on Surface Air Temperature in Myanmar and Thailand," Sustainability, MDPI, vol. 13(19), pages 1-21, October.
    11. Nadeem Ullah & Muhammad Amir Siddique & Mengyue Ding & Sara Grigoryan & Irshad Ahmad Khan & Zhihao Kang & Shangen Tsou & Tianlin Zhang & Yike Hu & Yazhuo Zhang, 2023. "The Impact of Urbanization on Urban Heat Island: Predictive Approach Using Google Earth Engine and CA-Markov Modelling (2005–2050) of Tianjin City, China," IJERPH, MDPI, vol. 20(3), pages 1-15, February.
    12. Mostafa A. Abdellatif & Farag O. Hassan & Heba S. A. Rashed & Ahmed A. El Baroudy & Elsayed Said Mohamed & Dmitry E. Kucher & Sameh Kotb Abd-Elmabod & Mohamed S. Shokr & Ahmed S. Abuzaid, 2023. "Assessing Soil Organic Carbon Pool for Potential Climate-Change Mitigation in Agricultural Soils—A Case Study Fayoum Depression, Egypt," Land, MDPI, vol. 12(9), pages 1-19, September.
    13. Kumar Ashwini & Briti Sundar Sil, 2022. "Impacts of Land Use and Land Cover Changes on Land Surface Temperature over Cachar Region, Northeast India—A Case Study," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    14. Athos Agapiou, 2021. "Land Cover Mapping from Colorized CORONA Archived Greyscale Satellite Data and Feature Extraction Classification," Land, MDPI, vol. 10(8), pages 1-14, July.
    15. Yuanzheng Li & Zezhi Zhao & Yashu Xin & Ao Xu & Shuyan Xie & Yi Yan & Lan Wang, 2022. "How Are Land-Use/Land-Cover Indices and Daytime and Nighttime Land Surface Temperatures Related in Eleven Urban Centres in Different Global Climatic Zones?," Land, MDPI, vol. 11(8), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:8:d:10.1007_s10668-022-02416-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.