IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i3d10.1007_s10668-022-02127-7.html
   My bibliography  Save this article

An integrated approach land suitability for agroecological zoning based on fuzzy inference system and GIS

Author

Listed:
  • Jafar Nabati

    (Ferdowsi University of Mashhad)

  • Ahmad Nezami

    (Ferdowsi University of Mashhad)

  • Ehsan Neamatollahi

    (Ferdowsi University of Mashhad)

  • Morteza Akbari

    (Ferdowsi University of Mashhad)

Abstract

Land suitability assessment is integral to land planning and development. One of the crucial ways to know the different capabilities of lands is to use agroecological zoning. The result of this type of land zoning is quantitative and qualitative increases in crop yields due to climate, soil, and topographic adaptations. This study aimed to create agroecological zoning maps for irrigated and rain-fed chickpea cultivation in semiarid regions in the Khorasan provinces, Iran. Data was prepared in a geographic information system (GIS) environment and using a membership function defined in a fuzzy inference system. Then, by weighted linear combination method, the standardized layers were combined with their weight in GIS environment to reach the final maps. The results illustrated that the precipitation factor had the highest weight (0.9) for rain-fed chickpea farming. For irrigated chickpea cultivation, slope and soil capability had the highest weight (0.9). The agroecological zoning maps indicated that 154,625 ha (0.7%) and 178,412 ha (2.9%) of the study area were the most suitable lands, respectively, for rain-fed and irrigated chickpea cultivation. 9.5% (2,265,128 ha) and 9% (2,168,314 ha), 31% (7,398,457 ha) and 19.1% (4,565,217 ha), and 58.8% (14,010,097 ha) and 71% (16,916,364 ha) of the study area were moderately suitable, marginally suitable, and unsuitable for rain-fed and irrigated chickpea cultivation, respectively. The results also illustrated that climatic zoning and topographic zoning have a critical role in determining the suitable areas for chickpea production under rain-fed and irrigated conditions.

Suggested Citation

  • Jafar Nabati & Ahmad Nezami & Ehsan Neamatollahi & Morteza Akbari, 2023. "An integrated approach land suitability for agroecological zoning based on fuzzy inference system and GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2316-2338, March.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:3:d:10.1007_s10668-022-02127-7
    DOI: 10.1007/s10668-022-02127-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02127-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02127-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García-López, J. & García-Ruiz, R. & Domínguez, J. & Lorite, I.J., 2019. "Improving the sustainability of farming systems under semi-arid conditions by enhancing crop management," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Akpoti, Komlavi & Kabo-bah, Amos T. & Zwart, Sander J., 2019. "Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 172-208.
    3. Worqlul, A. W. & Dile, Y. T. & Jeong, J. & Adimassu, Zenebe & Lefore, Nicole & Gerik, T. & Srinivasan, R. & Clarke, N., 2019. "Effect of climate change on land suitability for surface irrigation and irrigation potential of the shallow groundwater in Ghana," Papers published in Journals (Open Access), International Water Management Institute, pages 157:110-157.
    4. E. Neamatollahi & J. Vafabakhshi & M.R. Jahansuz & F. Sharifzadeh, 2017. "Agricultural Optimal Cropping Pattern Determination Based on Fuzzy System," Fuzzy Information and Engineering, Taylor & Francis Journals, vol. 9(4), pages 479-491, December.
    5. Shouqiang Yin & Jing Li & Jiaxin Liang & Kejing Jia & Zhen Yang & Yuan Wang, 2020. "Optimization of the Weighted Linear Combination Method for Agricultural Land Suitability Evaluation Considering Current Land Use and Regional Differences," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    6. Deines, Jillian M. & Schipanski, Meagan E. & Golden, Bill & Zipper, Samuel C. & Nozari, Soheil & Rottler, Caitlin & Guerrero, Bridget & Sharda, Vaishali, 2020. "Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts," Agricultural Water Management, Elsevier, vol. 233(C).
    7. Mokarram, Marzieh & Mirsoleimani, Abbas, 2018. "Using Fuzzy-AHP and order weight average (OWA) methods for land suitability determination for citrus cultivation in ArcGIS (Case study: Fars province, Iran)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 506-518.
    8. Veronique Theriault & Melinda Smale & Hamza Haider, 2018. "Economic incentives to use fertilizer on maize under differing agro-ecological conditions in Burkina Faso," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1263-1277, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    2. Subham Roy & Nimai Singha & Arghadeep Bose & Debanjan Basak & Indrajit Roy Chowdhury, 2023. "Multi-influencing factor (MIF) and RS–GIS-based determination of agriculture site suitability for achieving sustainable development of Sub-Himalayan region, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7101-7133, July.
    3. Akpoti, Komlavi & Dossou-Yovo, Elliott R. & Zwart, Sander J. & Kiepe, Paul, 2021. "The potential for expansion of irrigated rice under alternate wetting and drying in Burkina Faso," Agricultural Water Management, Elsevier, vol. 247(C).
    4. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    5. Oyakhilomen Oyinbo & Jordan Chamberlin & Miet Maertens, 2020. "Design of Digital Agricultural Extension Tools: Perspectives from Extension Agents in Nigeria," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 798-815, September.
    6. Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Li Ma & Yingnan Zhang & Muye Gan & Zhengying Shan, 2023. "Rethinking Man–Land Relations in China: A Multidisciplinary Perspective," Land, MDPI, vol. 12(8), pages 1-7, August.
    8. Rovelli, Roberto & Senes, Giulio & Fumagalli, Natalia & Sacco, Jessica & De Montis, Andrea, 2020. "From railways to greenways: a complex index for supporting policymaking and planning. A case study in Piedmont (Italy)," Land Use Policy, Elsevier, vol. 99(C).
    9. Théodore Nikiema & Eugène C. Ezin & Sylvain Kpenavoun Chogou, 2023. "Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    10. Bawa, Arun & Senay, Gabriel B. & Kumar, Sandeep, 2022. "Satellite remote sensing of crop water use across the Missouri River Basin for 1986–2018 period," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Shen Yuan & Kazuki Saito & Pepijn A. J. van Oort & Martin K. van Ittersum & Shaobing Peng & Patricio Grassini, 2024. "Intensifying rice production to reduce imports and land conversion in Africa," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Odhiambo Alphonce Kasera & Phennie Morghan Osure & Bruno Charles Oloo & Owili Mathews Odhiambo & Francis Odhiambo Salu & Hemolike Omondi Oguna, 2024. "Disambiguating Maize Policy Failure in Kenya, 2013 – 2024: A Political Economy Perspective," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(7), pages 2581-2601, July.
    13. A. Mendas & A. Mebrek & Z. Mekranfar, 2021. "Comparison between two multicriteria methods for assessing land suitability for agriculture: application in the area of Mleta in western part of Algeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9076-9089, June.
    14. Luis Carlos Soares da Silva Junior & David de Andrade Costa & Clifford B. Fedler, 2024. "From Scarcity to Abundance: Nature-Based Strategies for Small Communities Experiencing Water Scarcity in West Texas/USA," Sustainability, MDPI, vol. 16(5), pages 1-14, February.
    15. Xinxin Fu & Xiaofeng Wang & Jitao Zhou & Jiahao Ma, 2021. "Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit," Land, MDPI, vol. 10(10), pages 1-17, September.
    16. Jaime Martínez-Valderrama & Jorge Olcina & Gonzalo Delacámara & Emilio Guirado & Fernando T. Maestre, 2023. "Complex Policy Mixes are Needed to Cope with Agricultural Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2805-2834, May.
    17. Filippelli, Steven K. & Sloggy, Matthew R. & Vogeler, Jody C. & Manning, Dale T. & Goemans, Christopher & Senay, Gabriel B., 2022. "Remote sensing of field-scale irrigation withdrawals in the central Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 271(C).
    18. George Bilas & Nikolaos Karapetsas & Anne Gobin & Konstantinos Mesdanitis & Gergely Toth & Tamás Hermann & Yaosheng Wang & Liangguo Luo & Thomas M. Koutsos & Dimitrios Moshou & Thomas K. Alexandridis, 2022. "Land Suitability Analysis as a Tool for Evaluating Soil-Improving Cropping Systems," Land, MDPI, vol. 11(12), pages 1-20, December.
    19. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    20. Qing Liu & Zengzeng Su & Weihao Huang, 2022. "Analysis of the Influencing Factors of the High-Quality Utilization of Territorial Space Based on the Perspective of Spatial Equilibrium: A Case Study of Hunan Province, China," Sustainability, MDPI, vol. 14(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:3:d:10.1007_s10668-022-02127-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.