IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i4p754-d1108630.html
   My bibliography  Save this article

Collaborative Optimal Allocation of Urban Land Guide by Land Ecological Suitability: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area

Author

Listed:
  • Tingting Pan

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yu Zhang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Fengqin Yan

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Fenzhen Su

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Urban land optimization in urban agglomerations plays an important role in promoting territorial spatial planning to achieve high-quality development, land ecological suitability (LES) is one of the important variables influencing its urbanization and needs to be considered in urban growth simulation and modeling. This research proposed a multi-objective urban land optimization (MULO) model based on the non-dominated sorting genetic algorithm II (NSGA-II) which integrates the LES assessment. MULO starts with LES analysis based on a fuzzy analytical hierarchy process (AHP) and a minimum cumulative resistance (MCR) model. Then, two-step linear regression is used to optimize the quantity structure of built-up land. Finally, suitability and compactness are assigned to NSGA-II as objectives to obtain optimal spatial patterns. Taking the example of the Guangdong–Hong Kong–Macao Greater Bay Area, we found that all the newly added built-up land in 2030 is distributed in peri-urban areas around the original settlements, with approximate clustering in the northern part of Guangzhou and the southern part of Foshan under a balanced development scenario. This study highlights the importance of LES in urban growth modeling, and MULO can provide effective support for the spatial planning of urban agglomerations.

Suggested Citation

  • Tingting Pan & Yu Zhang & Fengqin Yan & Fenzhen Su, 2023. "Collaborative Optimal Allocation of Urban Land Guide by Land Ecological Suitability: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area," Land, MDPI, vol. 12(4), pages 1-17, March.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:4:p:754-:d:1108630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/4/754/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/4/754/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md. Mostafizur Rahman & György Szabó, 2021. "A Geospatial Approach to Measure Social Benefits in Urban Land Use Optimization Problem," Land, MDPI, vol. 10(12), pages 1-23, December.
    2. Huiping Huang & Qiangzi Li & Yuan Zhang, 2019. "Urban Residential Land Suitability Analysis Combining Remote Sensing and Social Sensing Data: A Case Study in Beijing, China," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    3. Akpoti, Komlavi & Kabo-bah, Amos T. & Zwart, Sander J., 2019. "Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 172-208.
    4. Pengfei Guo & Fangfang Zhang & Haiying Wang & Fen Qin, 2020. "Suitability Evaluation and Layout Optimization of the Spatial Distribution of Rural Residential Areas," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    5. Wenting Zhang & Bo Li, 2021. "Research on an Analytical Framework for Urban Spatial Structural and Functional Optimisation: A Case Study of Beijing City, China," Land, MDPI, vol. 10(1), pages 1-19, January.
    6. Franco, Luísa & Magalhães, Manuela Raposo, 2022. "Assessing the ecological suitability of land-use change. Lessons learned from a rural marginal area in southeast Portugal," Land Use Policy, Elsevier, vol. 122(C).
    7. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    8. Ruihua Wang, 2016. "An Improved Nondominated Sorting Genetic Algorithm for Multiobjective Problem," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulin Liu & Yi Lu & Dawei Xu & Herui Zhou & Shengnan Zhang, 2024. "Enhancing the MSPA Method to Incorporate Ecological Sensitivity: Construction of Ecological Security Patterns in Harbin City," Sustainability, MDPI, vol. 16(7), pages 1-23, March.
    2. Tingting Pan & Fengqin Yan & Fenzhen Su & Liang Xu, 2024. "The Assessment of Land Suitability for Urban Expansion and Renewal for Coastal Urban Agglomerations: A Pilot Study of the Guangdong-Hong Kong-Macao Greater Bay Area," Land, MDPI, vol. 13(11), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Salata & Sila Ozkavaf-Senalp & Koray Velibeyoğlu & Zeynep Elburz, 2022. "Land Suitability Analysis for Vineyard Cultivation in the Izmir Metropolitan Area," Land, MDPI, vol. 11(3), pages 1-20, March.
    2. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    3. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    4. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    5. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    6. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    7. Pathiraja, Erandathie & Griffith, Garry & Farquharson, Robert & Faggia, Rob, 2019. "The Cost of Climate Change to Agricultural Industries: Coconuts in Sri Lanka," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(05), December.
    8. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    9. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    10. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    11. Bohong Zheng & Rui Guo & Komi Bernard Bedra & Yanfen Xiang, 2022. "Quantitative Evaluation of Urban Style at Street Level: A Case Study of Hengyang County, China," Land, MDPI, vol. 11(4), pages 1-28, March.
    12. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    13. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    14. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    15. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    16. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    17. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    18. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    19. Kadir Kaan GÖNCÜ & Onur ÇETIN, 2022. "Evaluation Of Location Selection Criteria For Coordination Management Centers And Logistic Support Units In Disaster Areas With Ahp Method," Prizren Social Science Journal, SHIKS, vol. 6(2), pages 15-23, August.
    20. Tommaso Ortalli & Andrea Di Martino & Michela Longo & Dario Zaninelli, 2024. "Make-or-Buy Policy Decision in Maintenance Planning for Mobility: A Multi-Criteria Approach," Logistics, MDPI, vol. 8(2), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:4:p:754-:d:1108630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.