IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5325-d1099812.html
   My bibliography  Save this article

The Role of Digital Agriculture in Mitigating Climate Change and Ensuring Food Security: An Overview

Author

Listed:
  • Siva K. Balasundram

    (Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Redmond R. Shamshiri

    (Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
    Technische Universität Berlin, Chair of Agromechatronics, Straße des 17. Juni 144, 10623 Berlin, Germany)

  • Shankarappa Sridhara

    (Center for Climate Resilient Agriculture, University of Agricultural and Horticultural Sciences, Shivamogga 577412, India)

  • Nastaran Rizan

    (Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia)

Abstract

Digital agriculture involving different tools and management practices has advanced considerably in recent years, intending to overcome climate risk and reduce food insecurity. Climate change and its impacts on agricultural production and food security are significant sources of public concern worldwide. The objective of this study was to provide an overview of the potential impact of digital agriculture technologies and practices that can reduce greenhouse gas emissions and enhance productivity while ensuring food security. Based on a comprehensive survey of the previously published works, it was found that due to global warming, altered precipitation patterns, and an increase in the frequency of extreme events, climate change has negatively impacted food security by reducing agricultural yields, slowing animal growth rates, and decreasing livestock productivity. The reviewed works also suggest that using digital technology in agriculture is necessary to mitigate the effect of climate change and food insecurity. In addition, issues regarding creating sustainable agricultural food systems, minimizing environmental pollution, increasing yields, providing fair and equitable food distribution, and reducing malnutrition leading to food security were discussed in detail. It was shown that while digital agriculture has a crucial role in mitigating climate change and ensuring food security, it requires a concerted effort from policymakers, researchers, and farmers to ensure that the benefits of digitalization are realized in a sustainable and equitable manner.

Suggested Citation

  • Siva K. Balasundram & Redmond R. Shamshiri & Shankarappa Sridhara & Nastaran Rizan, 2023. "The Role of Digital Agriculture in Mitigating Climate Change and Ensuring Food Security: An Overview," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5325-:d:1099812
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5325/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5325/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Édson Luis Bolfe & Lúcio André de Castro Jorge & Ieda Del’Arco Sanches & Ariovaldo Luchiari Júnior & Cinthia Cabral da Costa & Daniel de Castro Victoria & Ricardo Yassushi Inamasu & Célia Regina Grego, 2020. "Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers," Agriculture, MDPI, vol. 10(12), pages 1-16, December.
    2. Vasu, Duraisamy & Srivastava, Rajeev & Patil, Nitin G. & Tiwary, Pramod & Chandran, Padikkal & Kumar Singh, Surendra, 2018. "A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level," Land Use Policy, Elsevier, vol. 79(C), pages 146-163.
    3. Akpoti, Komlavi & Kabo-bah, Amos T. & Zwart, Sander J., 2019. "Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 172-208.
    4. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.
    5. Ahmed Kayad & Dimitrios S. Paraforos & Francesco Marinello & Spyros Fountas, 2020. "Latest Advances in Sensor Applications in Agriculture," Agriculture, MDPI, vol. 10(8), pages 1-8, August.
    6. Piotr Gołasa & Marcin Wysokiński & Wioletta Bieńkowska-Gołasa & Piotr Gradziuk & Magdalena Golonko & Barbara Gradziuk & Agnieszka Siedlecka & Arkadiusz Gromada, 2021. "Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used," Energies, MDPI, vol. 14(13), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Cao & Zhixiong Fan & Weiqiang Chen & Zhijian Cao & Anyin Jiang, 2024. "Climate Change, Biased Technological Advances and Agricultural TFP: Empirical Evidence from China," Agriculture, MDPI, vol. 14(8), pages 1-19, July.
    2. Xinxin Zhou & Bangbang Zhang & Tong Chen, 2024. "Study on the Evolution of Spatiotemporal Dynamics and Regional Differences in the Development of Digital Agriculture in China," Sustainability, MDPI, vol. 16(16), pages 1-17, August.
    3. Wenjie Li & Guanyu Guo & Huangying Gu & Shuhao Lai & Yuanjie Duan & Chengming Li, 2024. "Digital Economy as a Buffer: Alleviating the Adverse Effects of Land Resource Mismatch on Food Security," Land, MDPI, vol. 13(11), pages 1-21, October.
    4. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    5. Omar Abu Hassim & Ismah Osman & Asmah Awal & Fhaisol Mat Amin, 2024. "Navigating the Path to Equitable and Sustainable Digital Agriculture among Small Farmers in Malaysia: A Comprehensive Review," Information Management and Business Review, AMH International, vol. 16(2), pages 173-188.
    6. Devendra Paudel & Ram Chandra Neupane & Sailesh Sigdel & Pradip Poudel & Aditya R. Khanal, 2023. "COVID-19 Pandemic, Climate Change, and Conflicts on Agriculture: A Trio of Challenges to Global Food Security," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    7. Lucas da Costa Santos & Lucas Santos do Patrocínio Figueiró & Fabiani Denise Bender & Jefferson Vieira José & Adma Viana Santos & Julia Eduarda Araujo & Evandro Luiz Mendonça Machado & Ricardo Siqueir, 2024. "Unveiling Climate Trends and Future Projections in Southeastern Brazil: A Case Study of Brazil’s Historic Agricultural Heritage," Sustainability, MDPI, vol. 16(11), pages 1-14, June.
    8. Mingming Li & Marko Milojevic & Dmitry Gura, 2024. "Development of methodology for evaluating sustainable rural development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 21237-21257, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timuçin Everest & Hakan Koparan & Ali Sungur & Hasan Özcan, 2022. "An important tool against combat climate change: Land suitability assessment for canola (a case study: Çanakkale, NW Turkey)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13137-13172, November.
    2. Ge Song & Hongmei Zhang, 2021. "Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China," Land, MDPI, vol. 10(2), pages 1-19, January.
    3. Harrison W. Smith & Amanda J. Ashworth & Phillip R. Owens, 2022. "GIS-Based Evaluation of Soil Suitability for Optimized Production on U.S. Tribal Lands," Agriculture, MDPI, vol. 12(9), pages 1-10, August.
    4. Talukdar, Swapan & Naikoo, Mohd Waseem & Mallick, Javed & Praveen, Bushra & Shahfahad, & Sharma, Pritee & Islam, Abu Reza Md. Towfiqul & Pal, Swades & Rahman, Atiqur, 2022. "Coupling geographic information system integrated fuzzy logic-analytical hierarchy process with global and machine learning based sensitivity analysis for agricultural suitability mapping," Agricultural Systems, Elsevier, vol. 196(C).
    5. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitalization of the agricultural sector: the impact of ICT on the development of enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    6. Bentivoglio, Deborah & Bucci, Giorgia & Belletti, Matteo & Finco, Adele, 2022. "A theoretical framework on network’s dynamics for precision agriculture technologies adoption," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 60(4), January.
    7. Anastasios Michailidis & Chrysanthi Charatsari & Thomas Bournaris & Efstratios Loizou & Aikaterini Paltaki & Dimitra Lazaridou & Evagelos D. Lioutas, 2024. "A First View on the Competencies and Training Needs of Farmers Working with and Researchers Working on Precision Agriculture Technologies," Agriculture, MDPI, vol. 14(1), pages 1-12, January.
    8. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    9. Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Pietro De Marinis & Paolo Stefano Ferrario & Guido Sali & Giulio Senes, 2022. "The Rapid and Participatory Assessment of Land Suitability in Development Cooperation," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    11. Patricio Vladimir Méndez-Zambrano & Luis Patricio Tierra Pérez & Rogelio Estalin Ureta Valdez & Ángel Patricio Flores Orozco, 2023. "Technological Innovations for Agricultural Production from an Environmental Perspective: A Review," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    12. Geries, L.S.M. & El-Shahawy, T.A. & Moursi, E.A., 2021. "Cut-off irrigation as an effective tool to increase water-use efficiency, enhance productivity, quality and storability of some onion cultivars," Agricultural Water Management, Elsevier, vol. 244(C).
    13. Edgar Vladimir Gutiérrez Castorena & Gustavo Andrés Ramírez Gómez & Carlos Alberto Ortíz Solorio, 2023. "The Agricultural Potential of a Region with Semi-Dry, Warm and Temperate Subhumid Climate Diversity through Agroecological Zoning," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    14. Małgorzata Holka & Jolanta Kowalska & Magdalena Jakubowska, 2022. "Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change?," Agriculture, MDPI, vol. 12(9), pages 1-21, September.
    15. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
    16. Maurício Roberto Cherubin & Júnior Melo Damian & Tiago Rodrigues Tavares & Rodrigo Gonçalves Trevisan & André Freitas Colaço & Mateus Tonini Eitelwein & Maurício Martello & Ricardo Yassushi Inamasu & , 2022. "Precision Agriculture in Brazil: The Trajectory of 25 Years of Scientific Research," Agriculture, MDPI, vol. 12(11), pages 1-29, November.
    17. Adina-Eliza Croitoru & Titus Cristian Man & Sorin Daniel Vâtcă & Bela Kobulniczky & Vlad Stoian, 2020. "Refining the Spatial Scale for Maize Crop Agro-Climatological Suitability Conditions in a Region with Complex Topography towards a Smart and Sustainable Agriculture. Case Study: Central Romania (Cluj ," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    18. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    19. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    20. Oleksandr Faichuk & Lesia Voliak & Taras Hutsol & Szymon Glowacki & Yuriy Pantsyr & Sergii Slobodian & Anna Szeląg-Sikora & Zofia Gródek-Szostak, 2022. "European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU," Sustainability, MDPI, vol. 14(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5325-:d:1099812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.