IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/939404.html
   My bibliography  Save this article

Prediction Model of Interval Grey Numbers with a Real Parameter and Its Application

Author

Listed:
  • Bo Zeng
  • Chuan Li
  • Xue-Yu Zhou
  • Xian-Jun Long

Abstract

Grey prediction models have become common methods which are widely employed to solve the problems with “small examples and poor information.” However, modeling objects of existing grey prediction models are limited to the homogenous data sequences which only contain the same data type. This paper studies the methodology of building prediction models of interval grey numbers that are grey heterogeneous data sequence, with a real parameter. Firstly, the position of the real parameter in an interval grey number sequence is discussed, and the real number is expanded into an interval grey number by adopting the method of grey generation. On this basis, a prediction model of interval grey number with a real parameter is deduced and built. Finally, this novel model is successfully applied to forecast the concentration of organic pollutant DDT in the atmosphere. The analysis and research results in this paper extend the object of grey prediction from homogenous data sequence to grey heterogeneous data sequence. Those research findings are of positive significance in terms of enriching and improving the theory system of grey prediction models.

Suggested Citation

  • Bo Zeng & Chuan Li & Xue-Yu Zhou & Xian-Jun Long, 2014. "Prediction Model of Interval Grey Numbers with a Real Parameter and Its Application," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-12, August.
  • Handle: RePEc:hin:jnlaaa:939404
    DOI: 10.1155/2014/939404
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/939404.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/939404.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/939404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Jiang & Yi-Chung Hu & Wenbao Wang & Hang Jiang & Geng Wu, 2020. "Interval Grey Prediction Models with Forecast Combination for Energy Demand Forecasting," Mathematics, MDPI, vol. 8(6), pages 1-12, June.
    2. Yi-Chung Hu, 2022. "Demand forecasting of green metal materials using non-equidistant grey prediction with robust nonlinear interval regression analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9809-9831, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:939404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.