IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i8d10.1007_s10668-020-01170-6.html
   My bibliography  Save this article

Treatment of digestate from swine sludge continuous stirred tank reactor to reduce total carbon and total solids content

Author

Listed:
  • A. Chini

    (Western Paraná State University)

  • C. E. Hollas

    (Western Paraná State University)

  • A. C. Bolsan

    (Universidade do Oeste de Santa Catarina)

  • F. G. Antes

    (Embrapa Suínos e Aves)

  • H. Treichel

    (Universidade Federal da Fronteira Sul)

  • A. Kunz

    (Western Paraná State University
    Embrapa Suínos e Aves
    Universidade Federal da Fronteira Sul)

Abstract

Anaerobic digestion is a biological process that can partially convert organic matter into gases with potential to energy generation. However, in case of continuous stirred tank reactor (CSTR) for the treatment of sludge from swine manure, a digestate with a high concentration of solids, undigested carbon, nitrogen and phosphorus is usually obtained, which can limit the direct application to the soil or other direct uses or disposal. Therefore, an additional treatment of digestate is still needed to meet environmental requirements for the viability of an anaerobic digestion plant to enable the disposal of the liquid effluent. In this study, solid-liquid separation (SLS) strategies were studied for treatment of digestate from swine sludge CSTR biodigester. The following processes were tested: settling, centrifugation and chemical flocculation.The performance of each process was evaluated by monitoring the concentrations of the following parameters in the raw digestate and after treatment: total carbon (TC), phosphorus, total kjeldahl nitrogen, ammonia nitrogen, total solids (TS), volatile solids and fixed solids. The factorial design was used for the optimization of centrifugation and chemical flocculation tests. Total carbon, solids and phosphorus were significantly reduced from digestate using the different SLS processes. However, higher removal efficiencies were obtained by centrifugation, being more expressive to phosphorus, TC and TS (reduction of 95, 90 and 83%, respectively). Furthermore, the sludge production by centrifugation was 3.8 and 7.3 times lower than by settling and chemical flocculation, respectively. Thus, centrifugation could be considered the most appropriate SLS process to enable digestate treatment and the liquid efluent is suitable to be treated by deammonification process for nitrogen removal.

Suggested Citation

  • A. Chini & C. E. Hollas & A. C. Bolsan & F. G. Antes & H. Treichel & A. Kunz, 2021. "Treatment of digestate from swine sludge continuous stirred tank reactor to reduce total carbon and total solids content," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12326-12341, August.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:8:d:10.1007_s10668-020-01170-6
    DOI: 10.1007/s10668-020-01170-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-01170-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-01170-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olga Popovic & Fabrizio Gioelli & Elio Dinuccio & Luca Rollè & Paolo Balsari, 2017. "Centrifugation of Digestate: The Effect of Chitosan on Separation Efficiency," Sustainability, MDPI, vol. 9(12), pages 1-9, December.
    2. Diego Díaz-Vázquez & Susan Caroline Alvarado-Cummings & Demetrio Meza-Rodríguez & Carolina Senés-Guerrero & José de Anda & Misael Sebastián Gradilla-Hernández, 2020. "Evaluation of Biogas Potential from Livestock Manures and Multicriteria Site Selection for Centralized Anaerobic Digester Systems: The Case of Jalisco, México," Sustainability, MDPI, vol. 12(9), pages 1-32, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wudneh Ayele Shewa & Martha Dagnew, 2020. "Revisiting Chemically Enhanced Primary Treatment of Wastewater: A Review," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    2. Jacob Rosholm Mortensen & Alastair James Ward & Martin Riis Weisbjerg & Sasha Daniel Hafner & Henrik Bjarne Møller, 2021. "Determination of Nitrogen and Sulphur Mineralization in Batch and Semi-Continuous Anaerobic Digestion Using an Artificial Fiber Bag Technique," Energies, MDPI, vol. 14(14), pages 1-17, July.
    3. Maria Salud Camilleri-Rumbau & Kelly Briceño & Lene Fjerbæk Søtoft & Knud Villy Christensen & Maria Cinta Roda-Serrat & Massimiliano Errico & Birgir Norddahl, 2021. "Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges," IJERPH, MDPI, vol. 18(6), pages 1-30, March.
    4. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    5. Enrique Cervantes-Astorga & Oscar Aguilar-Juárez & Danay Carrillo-Nieves & Misael Sebastián Gradilla-Hernández, 2021. "A GIS Methodology to Determine the Critical Regions for Mitigating Eutrophication in Large Territories: The Case of Jalisco, Mexico," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    6. Andrea Zanellati & Federica Spina & Luca Rollé & Giovanna Cristina Varese & Elio Dinuccio, 2020. "Fungal Pretreatments on Non-Sterile Solid Digestate to Enhance Methane Yield and the Sustainability of Anaerobic Digestion," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    7. Jakub Mazurkiewicz, 2022. "Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-20, November.
    8. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    9. Themistoklis Sfetsas & Georgia Sarikaki & Afroditi G. Chioti & Vassilis Tziakas & Polycarpos Falaras & George Em. Romanos, 2023. "Fractionation of Anaerobic Digestion Liquid Effluents through Mechanical Treatment and Filtration," Sustainability, MDPI, vol. 15(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:8:d:10.1007_s10668-020-01170-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.