IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4205-d592937.html
   My bibliography  Save this article

Determination of Nitrogen and Sulphur Mineralization in Batch and Semi-Continuous Anaerobic Digestion Using an Artificial Fiber Bag Technique

Author

Listed:
  • Jacob Rosholm Mortensen

    (PlanEnergi Nordjylland, Jyllandsgade 1, 9520 Skørping, Denmark)

  • Alastair James Ward

    (Department of Biological and Chemical Engineering, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark)

  • Martin Riis Weisbjerg

    (Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark)

  • Sasha Daniel Hafner

    (Hafner Consulting LLC, Reston, VA 20191, USA)

  • Henrik Bjarne Møller

    (Department of Biological and Chemical Engineering, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark)

Abstract

In the biogas industry, feedstock plans are used to estimate methane production and nutrient content in the digestate, however, these predictions do not consider the mineralized nitrogen fraction of the feedstock, which is useful when determining the quality of the digestate. In this study, the artificial fiber bag technique, which is commonly used to study feedstock degradation in ruminants, was implemented in anaerobic digestion to quantify mineralization of N and S. The artificial fiber bags were used to enclose substrates but with access to inoculum because of small pores in the bags, thereby enabling digestion. The content of the bags was analyzed before and after digestion to quantify residual mass as well as N and S concentration in the substrate. The method was validated through batch anaerobic digestion of a single substrate with and without bags, where the bags showed little influence on methane production and degradation. Semi-continuous anaerobic digestion experiments showed higher substrate degradation and higher N and S release at thermophilic conditions using four different types of feedstocks and proved useful for solid feedstocks but less so for semi-solid feedstock. For N, most of the mineralization occurred during the first 15 days over a trial of 30 days.

Suggested Citation

  • Jacob Rosholm Mortensen & Alastair James Ward & Martin Riis Weisbjerg & Sasha Daniel Hafner & Henrik Bjarne Møller, 2021. "Determination of Nitrogen and Sulphur Mineralization in Batch and Semi-Continuous Anaerobic Digestion Using an Artificial Fiber Bag Technique," Energies, MDPI, vol. 14(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4205-:d:592937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pengfei Li & Wenzhe Li & Mingchao Sun & Xiang Xu & Bo Zhang & Yong Sun, 2018. "Evaluation of Biochemical Methane Potential and Kinetics on the Anaerobic Digestion of Vegetable Crop Residues," Energies, MDPI, vol. 12(1), pages 1-14, December.
    2. Diego Díaz-Vázquez & Susan Caroline Alvarado-Cummings & Demetrio Meza-Rodríguez & Carolina Senés-Guerrero & José de Anda & Misael Sebastián Gradilla-Hernández, 2020. "Evaluation of Biogas Potential from Livestock Manures and Multicriteria Site Selection for Centralized Anaerobic Digester Systems: The Case of Jalisco, México," Sustainability, MDPI, vol. 12(9), pages 1-32, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrik B. Møller & Peter Sørensen & Jørgen E. Olesen & Søren O. Petersen & Tavs Nyord & Sven G. Sommer, 2022. "Agricultural Biogas Production—Climate and Environmental Impacts," Sustainability, MDPI, vol. 14(3), pages 1-24, February.
    2. A. Chini & C. E. Hollas & A. C. Bolsan & F. G. Antes & H. Treichel & A. Kunz, 2021. "Treatment of digestate from swine sludge continuous stirred tank reactor to reduce total carbon and total solids content," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12326-12341, August.
    3. Elena Rossi & Isabella Pecorini & Giovanni Ferrara & Renato Iannelli, 2022. "Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Biogas Production Optimization by Reducing Ammonia Inhibition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    4. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    5. Enrique Cervantes-Astorga & Oscar Aguilar-Juárez & Danay Carrillo-Nieves & Misael Sebastián Gradilla-Hernández, 2021. "A GIS Methodology to Determine the Critical Regions for Mitigating Eutrophication in Large Territories: The Case of Jalisco, Mexico," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    6. Elena Rossi & Isabella Pecorini & Renato Iannelli, 2022. "Multilinear Regression Model for Biogas Production Prediction from Dry Anaerobic Digestion of OFMSW," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    7. Jakub Mazurkiewicz, 2022. "Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-20, November.
    8. Patrícia V. Almeida & Rafaela P. Rodrigues & Leonor M. Teixeira & Andreia F. Santos & Rui C. Martins & Margarida J. Quina, 2021. "Bioenergy Production through Mono and Co-Digestion of Tomato Residues," Energies, MDPI, vol. 14(17), pages 1-16, September.
    9. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    10. Shruthi Meenakshisundaram & Vincenzo Calcagno & Claire Ceballos & Antoine Fayeulle & Estelle Léonard & Virginie Herledan & Jean-Marc Krafft & Yannick Millot & Xiaojun Liu & Claude Jolivalt & André Pau, 2023. "Chemically and Physically Pretreated Straw in Moderate Conditions: Poor Correlation between Biogas Production and Commonly Used Biomass Characterization," Energies, MDPI, vol. 16(3), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4205-:d:592937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.