IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i7d10.1007_s10668-020-01069-2.html
   My bibliography  Save this article

Material and energy flow in different bread baking types

Author

Listed:
  • Kamran Kheiralipour

    (Ilam University)

  • Nazafarin Sheikhi

    (Ilam University)

Abstract

Reducing energy consumption in industry, agriculture, and processing industries is important with regard to economical and environmental aspects. The purpose of the present study was to investigate the material and energy flow as well as energy indicators in the production of seven common breads in Iran. The input and output data were collected by questionnaire method and face-to-face interviews with Ilam bakeries in 2020. The energy content of inputs and output materials and the energy indicators were calculated. The total average of energy invested to produce one ton of bread was 22,622.70 MJ, and the output energy was 11,834.89 MJ. The highest output energy belonged to the production of Barbari bread, and the lowest amount was obtained for Sangak bread. The most effective energy consumer input in bread production was wheat flour with a share of 53.57%. The average energy ratio, energy intensity, and net energy gain indicator in bread production were 0.52, 22.62 MJ kg−1, and −10.79 MJ kg−1, respectively. The lowest energy consumption and energy intensity and the highest energy ratio index were related to Rizeshi Nimeh Hajmi bread, and the highest net energy gain was obtained for Barbari bread. Consumption of natural gas in the production of Sangak and Saji bread was higher than other bread types. The obtained findings are benefit results for optimizing the bakery units in point of both energy and material consumption as well as decreasing environmental impacts.

Suggested Citation

  • Kamran Kheiralipour & Nazafarin Sheikhi, 2021. "Material and energy flow in different bread baking types," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10512-10527, July.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:7:d:10.1007_s10668-020-01069-2
    DOI: 10.1007/s10668-020-01069-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-01069-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-01069-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taghavifar, Hamid & Mardani, Aref, 2015. "Energy consumption analysis of wheat production in West Azarbayjan utilizing life cycle assessment (LCA)," Renewable Energy, Elsevier, vol. 74(C), pages 208-213.
    2. Payandeh, Z. & Kheiralipour, K. & Karimi, M. & Khoshnevisan, B., 2017. "Joint data envelopment analysis and life cycle assessment for environmental impact reduction in broiler production systems," Energy, Elsevier, vol. 127(C), pages 768-774.
    3. Kizilaslan, Halil, 2009. "Input-output energy analysis of cherries production in Tokat Province of Turkey," Applied Energy, Elsevier, vol. 86(7-8), pages 1354-1358, July.
    4. Blancard, Stéphane & Martin, Elsa, 2014. "Energy efficiency measurement in agriculture with imprecise energy content information," Energy Policy, Elsevier, vol. 66(C), pages 198-208.
    5. Mohammad Jafari & Mashallah Mohammadi & Hushang Ghazizadeh & Nouzar Nakhaee, 2016. "Feasibility and Outcome of Reducing Salt in Bread: A Community Trial in Southern Iran," Global Journal of Health Science, Canadian Center of Science and Education, vol. 8(12), pages 163-163, December.
    6. Taseska, V. & Markovska, N. & Causevski, A. & Bosevski, T. & Pop-Jordanov, J., 2011. "Greenhouse gases (GHG) emissions reduction in a power system predominantly based on lignite," Energy, Elsevier, vol. 36(4), pages 2266-2270.
    7. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    2. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein & Shamshirband, Shahaboddin & Hamid, Siti Hafizah Ab, 2015. "Developing a fuzzy clustering model for better energy use in farm management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 27-34.
    3. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    4. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    5. Soltani, Shiva & Mosavi, Seyed Habibollah & Saghaian, Sayed H. & Azhdari, Somayeh & Alamdarlo, Hamed N. & Khalilian, Sadegh, 2023. "Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran," Energy, Elsevier, vol. 268(C).
    6. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    7. Jindřich Špička & Tomáš Vintr & Renata Aulová & Jana Macháčková, 2020. "Trade-off between the economic and environmental sustainability in Czech dual farm structure," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(6), pages 243-250.
    8. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    9. Álvaro J. Arnal & Patricia Royo & Gianpiero Pataro & Giovanna Ferrari & Víctor J. Ferreira & Ana M. López-Sabirón & Germán A. Ferreira, 2018. "Implementation of PEF Treatment at Real-Scale Tomatoes Processing Considering LCA Methodology as an Innovation Strategy in the Agri-Food Sector," Sustainability, MDPI, vol. 10(4), pages 1-16, March.
    10. Emmanouil Tziolas & Eleftherios Karapatzak & Ioannis Kalathas & Chris Lytridis & Spyridon Mamalis & Stefanos Koundouras & Theodore Pachidis & Vassilis G. Kaburlasos, 2023. "Comparative Assessment of Environmental/Energy Performance under Conventional Labor and Collaborative Robot Scenarios in Greek Viticulture," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    11. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    12. Dimitrios P. Platis & Christos D. Anagnostopoulos & Aggeliki D. Tsaboula & Georgios C. Menexes & Kiriaki L. Kalburtji & Andreas P. Mamolos, 2019. "Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    13. Unakıtan, Gökhan & Aydın, Başak, 2018. "A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region," Energy, Elsevier, vol. 149(C), pages 279-285.
    14. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    15. Thu Trang Tran Nguyen & Hai Ha Le & Thi Minh Hop Ho & Thomas Dogot & Philippe Burny & Thi Nga Bui & Philippe Lebailly, 2020. "Efficiency Analysis of the Progress of Orange Farms in Tuyen Quang Province, Vietnam towards Sustainable Development," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
    16. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
    17. Meng, Ming & Shang, Wei & Zhao, Xiaoli & Niu, Dongxiao & Li, Wei, 2015. "Decomposition and forecasting analysis of China's energy efficiency: An application of three-dimensional decomposition and small-sample hybrid models," Energy, Elsevier, vol. 89(C), pages 283-293.
    18. Li, Zixiang & Miao, Zhengqing & Shen, Xusheng & Li, Jiangtao, 2018. "Prevention of boiler performance degradation under large primary air ratio scenario in a 660 MW brown coal boiler," Energy, Elsevier, vol. 155(C), pages 474-483.
    19. Wettemann, Patrick Johannes Christopher & Latacz-Lohmann, Uwe, 2017. "An efficiency-based concept to assess potential cost and greenhouse gas savings on German dairy farms," Agricultural Systems, Elsevier, vol. 152(C), pages 27-37.
    20. Fadavi, Raheleh & Keyhani, Alireza & Saied Mohtasebi, Seyyed, 2012. "Estimation of a Mechanization Index and Its Impact on Energy and Economic Factors in Apple Orchard in Iran," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 2(02), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:7:d:10.1007_s10668-020-01069-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.