IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i11p6453-6462.html
   My bibliography  Save this article

Light vehicle energy efficiency programs and their impact on Brazilian CO2 emissions

Author

Listed:
  • Wills, William
  • La Rovere, Emilio Lèbre

Abstract

This paper analyses the impact of an energy efficiency program for light vehicles in Brazil on emissions of carbon dioxide (CO2), the main greenhouse gas in the atmosphere. Several energy efficiency programs for light vehicles around the world are reviewed. The cases of Japan and Europe were selected for presentation here given their status as current and future world leaders in the control of passenger vehicle fuel consumption. The launching of the National Climate Change Plan and the pressure on the Brazilian car industry due to the world financial crisis make it a good time for the Brazilian government to implement such a program, and its various benefits are highlighted in this study. Three scenarios are established for Brazil covering the 2000-2030 period: the first with no efficiency goals, the second with the Japanese goals applied with a 10 years delay, and the third, with the Japanese goals applied with no delay. The consequences of a vehicular efficiency program and its middle and long-term effects on the consumption of energy and the CO2 emissions are quantified and discussed. The simulation results indicate that efficiency goals may make an important contribution to reducing vehicular emissions and fuel consumption in Brazil, compared to a baseline scenario.

Suggested Citation

  • Wills, William & La Rovere, Emilio Lèbre, 2010. "Light vehicle energy efficiency programs and their impact on Brazilian CO2 emissions," Energy Policy, Elsevier, vol. 38(11), pages 6453-6462, November.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:11:p:6453-6462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00471-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suzana Kahn Ribeiro & Adrianna Andrade De Abreu, 2008. "Brazilian transport initiatives with GHG reductions as a co-benefit," Climate Policy, Taylor & Francis Journals, vol. 8(2), pages 220-240, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Rivera-González & David Bolonio & Luis F. Mazadiego & Sebastián Naranjo-Silva & Kenny Escobar-Segovia, 2020. "Long-Term Forecast of Energy and Fuels Demand Towards a Sustainable Road Transport Sector in Ecuador (2016–2035): A LEAP Model Application," Sustainability, MDPI, vol. 12(2), pages 1-26, January.
    2. Rafael Fernandes Mosquim & Carlos Eduardo Keutenedjian Mady, 2022. "Performance and Efficiency Trade-Offs in Brazilian Passenger Vehicle Fleet," Energies, MDPI, vol. 15(15), pages 1-22, July.
    3. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I., 2012. "Review on fuel economy standard and label for vehicle in selected ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1683-1695.
    4. Velasquez, Carlos E. & M.Chaves, Gustavo & M.Motta, Deborah & Bitencourt G. L. e Estanislau, Fidellis, 2024. "Carbon dioxide life cycle assessment for Brazilian passenger cars fleet towards 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Augustus De Melo, Conrado & De Martino Jannuzzi, Gilberto & De Mello Santana, Paulo Henrique, 2018. "Why should Brazil to implement mandatory fuel economy standards for the light vehicle fleet?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1166-1174.
    6. Roberto Ivo da Rocha Lima Filho & Thereza Cristina Nogueira de Aquino & Adriano Marçal Nogueira Neto, 2021. "Fuel price control in Brazil: environmental impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9811-9826, July.
    7. André Luiz Lopes Toledo & Emílio Lèbre La Rovere, 2018. "Urban Mobility and Greenhouse Gas Emissions: Status, Public Policies, and Scenarios in a Developing Economy City, Natal, Brazil," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    8. Atabani, A.E. & Badruddin, Irfan Anjum & Mekhilef, S. & Silitonga, A.S., 2011. "A review on global fuel economy standards, labels and technologies in the transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4586-4610.
    9. Hao, Han & Geng, Yong & Sarkis, Joseph, 2016. "Carbon footprint of global passenger cars: Scenarios through 2050," Energy, Elsevier, vol. 101(C), pages 121-131.
    10. Almeida, Alexandre N. & Santos, Augusto S. & Halmenschlager, Vinícius & Gilio, Leandro & Diniz, Tiago B. & Ferreira, Alexandre A. S., 2016. "Flexible-fuel automobiles and CO2 emissions in Brazil: a semiparametric analysis using panel data," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235733, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joana Setzer & Rachel Biderman, 2013. "Increasing Participation in Climate Policy Implementation: A Case for Engaging SMEs from the Transport Sector in the City of São Paulo," Environment and Planning C, , vol. 31(5), pages 806-821, October.
    2. Loo, Becky P.Y. & Tsoi, Ka Ho & Banister, David, 2020. "Recent experiences and divergent pathways to transport decoupling," Journal of Transport Geography, Elsevier, vol. 88(C).
    3. Imran Habib Ahmad, 2009. "Climate Policy Integration: Towards Operationalization," Working Papers 73, United Nations, Department of Economics and Social Affairs.
    4. Pueyo, Ana & García, Rodrigo & Mendiluce, María & Morales, Darío, 2011. "The role of technology transfer for the development of a local wind component industry in Chile," Energy Policy, Elsevier, vol. 39(7), pages 4274-4283, July.
    5. Sudhakara Reddy, B. & Assenza, Gaudenz B., 2009. "The great climate debate," Energy Policy, Elsevier, vol. 37(8), pages 2997-3008, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:11:p:6453-6462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.