IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i3d10.1007_s10668-020-00724-y.html
   My bibliography  Save this article

Appraising the triple bottom line utility of sustainable project portfolio selection using a novel multi-criteria house of portfolio

Author

Listed:
  • Seyed Farid Ghannadpour

    (Iran University of Science and Technology)

  • Ali Reza Hoseini

    (Iran University of Science and Technology)

  • Morteza Bagherpour

    (Iran University of Science and Technology)

  • Elmira Ahmadi

    (Iran University of Science and Technology)

Abstract

Sustainable development is one of the most fundamental scientific and practical fields of development in modern societies which its importance is more comprehensible in underdevelopment countries. Project management methodologies have been incorporated sustainable criteria to enhance the quality of their scope. The purpose of this research is to design an effective three-stage novel combination approach to estimate the sustainability utility of projects based on the sustainable principles and the ranking of projects through a novel multi-criteria house of portfolio in analytical network process (ANP) and quality function deployment (QFD) approaches. In the first step, using Sustainable Balanced Scorecard, key sustainability indicators are identified for ranking projects; then, using the QFD-ANP combination approach, identifying the relationships between the indicators, determining their significance and ranking projects are being implemented. Finally, the estimation of the sustainability utility function of reference projects is made according to the ranking of the projects from the QFD-ANP stage and using the UTASTAR method. The results of this research, in addition to identifying key indicators of sustainable development and classifying them in the form of Sustainable Balanced Scorecard, contain a prioritization pattern to select sustainable projects for current and future projects in an automotive company.

Suggested Citation

  • Seyed Farid Ghannadpour & Ali Reza Hoseini & Morteza Bagherpour & Elmira Ahmadi, 2021. "Appraising the triple bottom line utility of sustainable project portfolio selection using a novel multi-criteria house of portfolio," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3396-3437, March.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00724-y
    DOI: 10.1007/s10668-020-00724-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00724-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00724-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhittin Oral & Ossama Kettani & Pascal Lang, 1991. "A Methodology for Collective Evaluation and Selection of Industrial R&D Projects," Management Science, INFORMS, vol. 37(7), pages 871-885, July.
    2. Naser Bagheri Moghadam & Majid Samsami & Seyed Hossein Hosseini & Mahdi Sahafzadeh, 2015. "Utilisation of BSC to transform corporate-level goals into project portfolio strategies," International Journal of Project Organisation and Management, Inderscience Enterprises Ltd, vol. 7(2), pages 132-150.
    3. F Ghasemzadeh & N Archer & P Iyogun, 1999. "A zero-one model for project portfolio selection and scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(7), pages 745-755, July.
    4. Grigoroudis, E. & Orfanoudaki, E. & Zopounidis, C., 2012. "Strategic performance measurement in a healthcare organisation: A multiple criteria approach based on balanced scorecard," Omega, Elsevier, vol. 40(1), pages 104-119, January.
    5. Saaty, Thomas L. & Takizawa, Masahiro, 1986. "Dependence and independence: From linear hierarchies to nonlinear networks," European Journal of Operational Research, Elsevier, vol. 26(2), pages 229-237, August.
    6. Teller, Juliane & Unger, Barbara & Kock, Alexander & Gemünden, Hans Georg, 2012. "Formalization of Project Portfolio Management: The Moderating Role of Portfolio Complexity," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63283, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Goumas, M. & Lygerou, V., 2000. "An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects," European Journal of Operational Research, Elsevier, vol. 123(3), pages 606-613, June.
    8. Thomas L. Saaty & Luis G. Vargas, 1998. "Diagnosis with Dependent Symptoms: Bayes Theorem and the Analytic Hierarchy Process," Operations Research, INFORMS, vol. 46(4), pages 491-502, August.
    9. Andreas Möller & Stefan Schaltegger, 2005. "The Sustainability Balanced Scorecard as a Framework for Eco‐efficiency Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 73-83, October.
    10. Aragonés-Beltrán, Pablo & Chaparro-González, Fidel & Pastor-Ferrando, Juan-Pascual & Pla-Rubio, Andrea, 2014. "An AHP (Analytic Hierarchy Process)/ANP (Analytic Network Process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects," Energy, Elsevier, vol. 66(C), pages 222-238.
    11. Van Huylenbroeck, G & Martens, L, 1992. "The Average Value Ranking Multi-criteria Method for Project Evaluation in Regional Planning," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 19(2), pages 237-252.
    12. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    13. Lanndon A. Ocampo, 2019. "Applying fuzzy AHP–TOPSIS technique in identifying the content strategy of sustainable manufacturing for food production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2225-2251, October.
    14. Huang, Chi-Cheng & Chu, Pin-Yu & Chiang, Yu-Hsiu, 2008. "A fuzzy AHP application in government-sponsored R&D project selection," Omega, Elsevier, vol. 36(6), pages 1038-1052, December.
    15. Green, Rodney H. & Doyle, John R. & Cook, Wade D., 1996. "Preference voting and project ranking using DEA and cross-evaluation," European Journal of Operational Research, Elsevier, vol. 90(3), pages 461-472, May.
    16. Govers, Cor P. M., 2001. "QFD not just a tool but a way of quality management," International Journal of Production Economics, Elsevier, vol. 69(2), pages 151-159, January.
    17. Tavana, Madjid & Khosrojerdi, Ghasem & Mina, Hassan & Rahman, Amirah, 2019. "A hybrid mathematical programming model for optimal project portfolio selection using fuzzy inference system and analytic hierarchy process," Evaluation and Program Planning, Elsevier, vol. 77(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youchao Tan & Yang Zhang & Roohollah Khodaverdi, 2017. "Service performance evaluation using data envelopment analysis and balance scorecard approach: an application to automotive industry," Annals of Operations Research, Springer, vol. 248(1), pages 449-470, January.
    2. Modak, Mousumi & Pathak, Khanindra & Ghosh, Kunal Kanti, 2017. "Performance evaluation of outsourcing decision using a BSC and Fuzzy AHP approach: A case of the Indian coal mining organization," Resources Policy, Elsevier, vol. 52(C), pages 181-191.
    3. Kahraman, Cengiz & Ertay, Tijen & Buyukozkan, Gulcin, 2006. "A fuzzy optimization model for QFD planning process using analytic network approach," European Journal of Operational Research, Elsevier, vol. 171(2), pages 390-411, June.
    4. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    5. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    6. Liu, Hui-hui & Song, Yao-yao & Liu, Xiao-xiao & Yang, Guo-liang, 2020. "Aggregating the DEA prospect cross-efficiency with an application to state key laboratories in China," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    7. Kusi-Sarpong, Simonov & Sarkis, Joseph & Wang, Xuping, 2016. "Assessing green supply chain practices in the Ghanaian mining industry: A framework and evaluation," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 325-341.
    8. Kurka, Thomas & Blackwood, David, 2013. "Selection of MCA methods to support decision making for renewable energy developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 225-233.
    9. W. Wey & W. Wei, 2016. "Urban Street Environment Design for Quality of Urban Life," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 126(1), pages 161-186, March.
    10. Oral, Muhittin & Oukil, Amar & Malouin, Jean-Louis & Kettani, Ossama, 2014. "The appreciative democratic voice of DEA: A case of faculty academic performance evaluation," Socio-Economic Planning Sciences, Elsevier, vol. 48(1), pages 20-28.
    11. Chen, C.M., 2008. "Multi-Factor Policy Evaluation and Selection in the One-Sample Situation," ERIM Report Series Research in Management ERS-2008-084-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    13. Jie Wu & Junfei Chu & Qingyuan Zhu & Yongjun Li & Liang Liang, 2016. "Determining common weights in data envelopment analysis based on the satisfaction degree," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1446-1458, December.
    14. Amar Oukil & Srikrishna Madhumohan Govindaluri, 2020. "A hybrid multi‐attribute decision‐making procedure for ranking project proposals: A historical data perspective," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(3), pages 461-472, April.
    15. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    16. Jui-Te Chiang & Chei-Chang Chiou & Shuh-Chyi Doong & I-Fang Chang, 2020. "Research on the Construction of Performance Indicators for the Marketing Alliance of Catering Industry and Credit Card Issuing Banks by Using the Balanced Scorecard and Fuzzy AHP," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    17. Somsuk, Nisakorn & Laosirihongthong, Tritos, 2014. "A fuzzy AHP to prioritize enabling factors for strategic management of university business incubators: Resource-based view," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 198-210.
    18. Karasakal, Esra & Aker, Pınar, 2017. "A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem," Omega, Elsevier, vol. 73(C), pages 79-92.
    19. P P Sutton & R H Green, 2007. "Choice is a value statement. On inferring optimal multiple attribute portfolios from non-optimal nominations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1526-1533, November.
    20. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "On the choice of weights profiles in cross-efficiency evaluations," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1564-1572, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00724-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.