IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i12d10.1007_s10668-021-01391-3.html
   My bibliography  Save this article

Identification of the probability of the park effect in a wave-to-power system using the analytical hierarchical process and a polynomial neural network model

Author

Listed:
  • Satyabrata Saha

    (NIT Agartala)

  • Mrinmoy Majumder

    (NIT Agartala)

  • Manish Pal

    (NIT Agartala)

Abstract

The park effect occurs for various reasons in field applications of wave energy conversion. Not all possible causal factors are equally responsible for causing the park effect. The varying significances of the causes were approximated in an objective manner using the analytical hierarchical process multi-criteria decision-making technique and were assessed with an index function where the reasons were used as indicators and the function was the aggregated weighted contribution of each individual reason. A real-time monitoring system was also developed to monitor peak effects in a wave-to-power system in a continuous manner, such that loss due to the park effect could be prevented in real time, ensuring minimum loss of production capacity. Such a monitoring system would use the same aggregated weighted function to monitor the effects, and a network of sensors fixed at strategic points would be used to retrieve the magnitudes of the causal factors. An automatic framework to estimate the park effect was developed using a polynomial neural network architecture, and it was tested for three different locations. An experimental validation of the index values for these three locations was performed. The results indicated that offshore locations of wave-to-power systems were the most vulnerable to the park effect. It was also found that, both offshore and near shore, the distance between converters has the highest significance, whereas for onshore converters, the position of the WEC in relation to the incoming wave was found to be the most important indicator among the six investigated in the present study. Significant uncertainties appeared due to the lack of field-tested results for use in calculating the park effect on devices. However, the use of a physical model reduced these uncertainties, and a reliable framework was developed. Further real-time testing of the indicators will help develop practical implementations of the index for the formulation of policy.

Suggested Citation

  • Satyabrata Saha & Mrinmoy Majumder & Manish Pal, 2021. "Identification of the probability of the park effect in a wave-to-power system using the analytical hierarchical process and a polynomial neural network model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17403-17422, December.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:12:d:10.1007_s10668-021-01391-3
    DOI: 10.1007/s10668-021-01391-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01391-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01391-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    2. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    3. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    4. Babarit, A., 2013. "On the park effect in arrays of oscillating wave energy converters," Renewable Energy, Elsevier, vol. 58(C), pages 68-78.
    5. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    6. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    7. Kofoed, J.P. & Pecher, A. & Margheritini, L. & Antonishen, M. & Bittencourt, C. & Holmes, B. & Retzler, C. & Berthelsen, K. & Le Crom, I. & Neumann, F. & Johnstone, C. & McCombes, T. & Myers, L.E., 2013. "A methodology for equitable performance assessment and presentation of wave energy converters based on sea trials," Renewable Energy, Elsevier, vol. 52(C), pages 99-110.
    8. Renzi, E. & Abdolali, A. & Bellotti, G. & Dias, F., 2014. "Wave-power absorption from a finite array of oscillating wave surge converters," Renewable Energy, Elsevier, vol. 63(C), pages 55-68.
    9. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    10. Heikkinen, Heidi & Lampinen, Markku J. & Böling, Jari, 2013. "Analytical study of the interaction between waves and cylindrical wave energy converters oscillating in two modes," Renewable Energy, Elsevier, vol. 50(C), pages 150-160.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Corrales-Gonzalez & George Lavidas & Giovanni Besio, 2023. "Feasibility of Wave Energy Harvesting in the Ligurian Sea, Italy," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    2. Cheng, Yong & Li, Gen & Ji, Chunyan & Fan, Tianhui & Zhai, Gangjun, 2020. "Fully nonlinear investigations on performance of an OWSC (oscillating wave surge converter) in 3D (three-dimensional) open water," Energy, Elsevier, vol. 210(C).
    3. Zheng, Siming & Zhang, Yongliang, 2018. "Theoretical modelling of a new hybrid wave energy converter in regular waves," Renewable Energy, Elsevier, vol. 128(PA), pages 125-141.
    4. Rusu, Liliana & Onea, Florin, 2017. "The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1348-1362.
    5. Aristodemo, Francesco & Algieri Ferraro, Danilo, 2018. "Feasibility of WEC installations for domestic and public electrical supplies: A case study off the Calabrian coast," Renewable Energy, Elsevier, vol. 121(C), pages 261-285.
    6. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    7. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    9. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    10. Galván-Pozos, D.E. & Sergiienko, N.Y. & García-Nava, H. & Ocampo-Torres, F.J. & Osuna-Cañedo, J.P., 2024. "Numerical analysis of the energy capture performance of a six-leg wave energy converter under Mexican waters wave conditions," Renewable Energy, Elsevier, vol. 228(C).
    11. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    12. George Lavidas & Vengatesan Venugopal, 2018. "Energy Production Benefits by Wind and Wave Energies for the Autonomous System of Crete," Energies, MDPI, vol. 11(10), pages 1-14, October.
    13. Satymov, Rasul & Bogdanov, Dmitrii & Dadashi, Mojtaba & Lavidas, George & Breyer, Christian, 2024. "Techno-economic assessment of global and regional wave energy resource potentials and profiles in hourly resolution," Applied Energy, Elsevier, vol. 364(C).
    14. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    15. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    16. Bozzi, Silvia & Giassi, Marianna & Moreno Miquel, Adrià & Antonini, Alessandro & Bizzozero, Federica & Gruosso, Giambattista & Archetti, Renata & Passoni, Giuseppe, 2017. "Wave energy farm design in real wave climates: the Italian offshore," Energy, Elsevier, vol. 122(C), pages 378-389.
    17. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    18. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    19. Choupin, O. & Têtu, A. & Del Río-Gamero, B. & Ferri, F. & Kofoed, JP., 2022. "Premises for an annual energy production and capacity factor improvement towards a few optimised wave energy converters configurations and resources pairs," Applied Energy, Elsevier, vol. 312(C).
    20. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:12:d:10.1007_s10668-021-01391-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.