IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp494-505.html
   My bibliography  Save this article

Perspectives for harnessing the energetic persistent high swells reaching the coast of Chile

Author

Listed:
  • Mazzaretto, Ottavio Mattia
  • Lucero, Felipe
  • Besio, Giovanni
  • Cienfuegos, Rodrigo

Abstract

The wave climate along the Pacific Chilean coast and its possible exploitation for marine energy generation between latitudes 33.00°S and 40.50°S are evaluated. A database of hindcast wave spectra in coastal waters between 1989 and 2013 is used to perform the analysis at four different depths: 15m, 20m, 50m, and 100m. Monthly wave power and mean wave direction statistics between deep and shallower water (20m) are analyzed. Furthermore, the variability of wave statistics is compared for the four different shallow-to-intermediate water depths and latitudes. The performance of five wave energy devices is assessed under their best operating conditions in terms of water depth: SeaPower, OEBuoy, Wavestar, CETO, and Seabased. Median Produced Electrical Power, Capacity Factor and Capture Width Ratio are computed for the 24 years of the database. These devices are divided in two categories, the WECs with higher rated power (≥1200kW) and the lower rated power devices (<1200kW). These devices are compared considering an average performance along the coast during the whole period. Among the formers OEBuoy stood out for Cf and CWR (on average: PE:318.02 kW, Cf:12.7% and CWR:19.96%), while among the last group CETO 50m highlighted for PE and CWR (on average: PE:15.39 kW, Cf:6.70% and CWR:7.74%).

Suggested Citation

  • Mazzaretto, Ottavio Mattia & Lucero, Felipe & Besio, Giovanni & Cienfuegos, Rodrigo, 2020. "Perspectives for harnessing the energetic persistent high swells reaching the coast of Chile," Renewable Energy, Elsevier, vol. 159(C), pages 494-505.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:494-505
    DOI: 10.1016/j.renene.2020.05.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lucero, Felipe & Catalán, Patricio A. & Ossandón, Álvaro & Beyá, José & Puelma, Andrés & Zamorano, Luis, 2017. "Wave energy assessment in the central-south coast of Chile," Renewable Energy, Elsevier, vol. 114(PA), pages 120-131.
    2. Veigas, M. & López, M. & Iglesias, G., 2014. "Assessing the optimal location for a shoreline wave energy converter," Applied Energy, Elsevier, vol. 132(C), pages 404-411.
    3. Babarit, A., 2015. "A database of capture width ratio of wave energy converters," Renewable Energy, Elsevier, vol. 80(C), pages 610-628.
    4. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    5. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    6. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    7. Folley, M. & Whittaker, T.J.T., 2009. "Analysis of the nearshore wave energy resource," Renewable Energy, Elsevier, vol. 34(7), pages 1709-1715.
    8. Mediavilla, D.G. & Figueroa, D., 2017. "Assessment, sources and predictability of the swell wave power arriving to Chile," Renewable Energy, Elsevier, vol. 114(PA), pages 108-119.
    9. Dunnett, David & Wallace, James S., 2009. "Electricity generation from wave power in Canada," Renewable Energy, Elsevier, vol. 34(1), pages 179-195.
    10. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    11. Villalón, V. & Watts, D. & Cienfuegos, R., 2019. "Assessment of the power potential extraction in the Chilean Chacao channel," Renewable Energy, Elsevier, vol. 131(C), pages 585-596.
    12. Rodríguez-Monroy, Carlos & Mármol-Acitores, Gloria & Nilsson-Cifuentes, Gabriel, 2018. "Electricity generation in Chile using non-conventional renewable energy sources – A focus on biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 937-945.
    13. Rusu, Liliana & Onea, Florin, 2017. "The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1348-1362.
    14. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    15. Rico H. Hansen & Morten M. Kramer & Enrique Vidal, 2013. "Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter," Energies, MDPI, vol. 6(8), pages 1-44, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    2. Eelsalu, Maris & Montoya, Rubén D. & Aramburo, Darwin & Osorio, Andrés F. & Soomere, Tarmo, 2024. "Spatial and temporal variability of wave energy resource in the eastern Pacific from Panama to the Drake passage," Renewable Energy, Elsevier, vol. 224(C).
    3. Antonio Mariani & Gaetano Crispino & Pasquale Contestabile & Furio Cascetta & Corrado Gisonni & Diego Vicinanza & Andrea Unich, 2021. "Optimization of Low Head Axial-Flow Turbines for an Overtopping BReakwater for Energy Conversion: A Case Study," Energies, MDPI, vol. 14(15), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choupin, O. & Têtu, A. & Del Río-Gamero, B. & Ferri, F. & Kofoed, JP., 2022. "Premises for an annual energy production and capacity factor improvement towards a few optimised wave energy converters configurations and resources pairs," Applied Energy, Elsevier, vol. 312(C).
    2. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    3. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    4. Shi, Xueli & Liang, Bingchen & Du, Shengtao & Shao, Zhuxiao & Li, Shaowu, 2022. "Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation," Renewable Energy, Elsevier, vol. 199(C), pages 1381-1407.
    5. Galván-Pozos, D.E. & Sergiienko, N.Y. & García-Nava, H. & Ocampo-Torres, F.J. & Osuna-Cañedo, J.P., 2024. "Numerical analysis of the energy capture performance of a six-leg wave energy converter under Mexican waters wave conditions," Renewable Energy, Elsevier, vol. 228(C).
    6. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    7. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    9. Majidi, AjabGul & Bingölbali, Bilal & Akpınar, Adem & Iglesias, Gregorio & Jafali, Halid, 2021. "Downscaling wave energy converters for optimum performance in low-energy seas," Renewable Energy, Elsevier, vol. 168(C), pages 705-722.
    10. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    11. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    13. Kamranzad, Bahareh & Hadadpour, Sanaz, 2020. "A multi-criteria approach for selection of wave energy converter/location," Energy, Elsevier, vol. 204(C).
    14. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    15. Rasool, Safdar & Muttaqi, Kashem M. & Sutanto, Danny & Hemer, Mark, 2022. "Quantifying the reduction in power variability of co-located offshore wind-wave farms," Renewable Energy, Elsevier, vol. 185(C), pages 1018-1033.
    16. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    17. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    18. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    19. Wang, Yingguang & Wang, Lifu, 2018. "Towards realistically predicting the power outputs of wave energy converters: Nonlinear simulation," Energy, Elsevier, vol. 144(C), pages 120-128.
    20. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:494-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.