IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v60y2021i6d10.1007_s00181-020-01962-9.html
   My bibliography  Save this article

Maximum simulated likelihood estimation of the seemingly unrelated stochastic frontier regressions

Author

Listed:
  • Hung-pin Lai

    (National Chung Cheng University)

Abstract

In this paper, we use the maximum simulated likelihood (MSL) approach to estimate multiple stochastic frontier (SF) models with random effects and correlated composite errors. We show that the separate estimation of the single equation ignores the correlation between the composite errors and causes significant efficiency loss in estimation. In addition to using Monte Carlo simulation to investigate the finite sample performance of the simulated estimator, we demonstrate the usefulness of our approach in estimating the technical efficiency of Taiwan’s international hotels based on their accommodation and restaurant divisions.

Suggested Citation

  • Hung-pin Lai, 2021. "Maximum simulated likelihood estimation of the seemingly unrelated stochastic frontier regressions," Empirical Economics, Springer, vol. 60(6), pages 2943-2968, June.
  • Handle: RePEc:spr:empeco:v:60:y:2021:i:6:d:10.1007_s00181-020-01962-9
    DOI: 10.1007/s00181-020-01962-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-020-01962-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-020-01962-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Greene, 2003. "Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function," Journal of Productivity Analysis, Springer, vol. 19(2), pages 179-190, April.
    2. Hung-pin Lai & Cliff Huang, 2013. "Maximum likelihood estimation of seemingly unrelated stochastic frontier regressions," Journal of Productivity Analysis, Springer, vol. 40(1), pages 1-14, August.
    3. Lai, Hung-pin & Kumbhakar, Subal C., 2018. "Panel data stochastic frontier model with determinants of persistent and transient inefficiency," European Journal of Operational Research, Elsevier, vol. 271(2), pages 746-755.
    4. Murray D. Smith, 2008. "Stochastic frontier models with dependent error components," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 172-192, March.
    5. Christopher F. Parmeter & Robin C. Sickles (ed.), 2021. "Advances in Efficiency and Productivity Analysis," Springer Proceedings in Business and Economics, Springer, number 978-3-030-47106-4, March.
    6. Christine Amsler & Artem Prokhorov & Peter Schmidt, 2014. "Using Copulas to Model Time Dependence in Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 497-522, August.
    7. Genius, Margarita & Stefanou, Spiro E. & Tzouvelekas, Vangelis, 2012. "Measuring productivity growth under factor non-substitution: An application to US steam-electric power generation utilities," European Journal of Operational Research, Elsevier, vol. 220(3), pages 844-852.
    8. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    9. Lai, Hung-pin & Kumbhakar, Subal C., 2018. "Endogeneity in panel data stochastic frontier model with determinants of persistent and transient inefficiency," Economics Letters, Elsevier, vol. 162(C), pages 5-9.
    10. Christine Amsler & Peter Schmidt, 2021. "A Survey of the Use of Copulas in Stochastic Frontier Models," Springer Proceedings in Business and Economics, in: Christopher F. Parmeter & Robin C. Sickles (ed.), Advances in Efficiency and Productivity Analysis, pages 125-138, Springer.
    11. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kexin Li & Jianxu Liu & Yuting Xue & Sanzidur Rahman & Songsak Sriboonchitta, 2022. "Consequences of Ignoring Dependent Error Components and Heterogeneity in a Stochastic Frontier Model: An Application to Rice Producers in Northern Thailand," Agriculture, MDPI, vol. 12(8), pages 1-17, July.
    2. Schmidt, Rouven & Kneib, Thomas, 2023. "Multivariate distributional stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    3. Huang, Tai-Hsin & Chen, Kuan-Chen & Lin, Chung-I, 2018. "An extension from network DEA to copula-based network SFA: Evidence from the U.S. commercial banks in 2009," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 51-62.
    4. Tai-Hsin Huang & Nan-Hung Liu & Subal C. Kumbhakar, 2018. "Joint estimation of the Lerner index and cost efficiency using copula methods," Empirical Economics, Springer, vol. 54(2), pages 799-822, March.
    5. Huang, Tai-Hsin & Hu, Chu-Nan & Chang, Bao-Guang, 2018. "Competition, efficiency, and innovation in Taiwan’s banking industry — An application of copula methods," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 362-375.
    6. Hung-pin Lai & Cliff Huang, 2013. "Maximum likelihood estimation of seemingly unrelated stochastic frontier regressions," Journal of Productivity Analysis, Springer, vol. 40(1), pages 1-14, August.
    7. Graziella Bonanno & Domenico De Giovanni & Filippo Domma, 2017. "The ‘wrong skewness’ problem: a re-specification of stochastic frontiers," Journal of Productivity Analysis, Springer, vol. 47(1), pages 49-64, February.
    8. Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.
    9. Tai-Hsin Huang & Yi-Chun Lin & Kuo-Jui Huang & Yu-Wei Liao, 2022. "Comparing Cost Efficiency Between Financial and Non-financial Holding Banks and Insurers in Taiwan Under the Framework of Copula Methods and Metafrontier," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(4), pages 735-766, December.
    10. Huang, Tai-Hsin & Chiang, Dien-Lin & Chao, Shih-Wei, 2017. "A new approach to jointly estimating the Lerner index and cost efficiency for multi-output banks under a stochastic meta-frontier framework," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 212-226.
    11. Christine Amsler & Peter Schmidt & Wen-Jen Tsay, 2019. "Evaluating the CDF of the distribution of the stochastic frontier composed error," Journal of Productivity Analysis, Springer, vol. 52(1), pages 29-35, December.
    12. Tai-Hsin Huang & Yi-Huang Chiu & Chih-Ying Mao, 2021. "Imposing Regularity Conditions to Measure Banks’ Productivity Changes in Taiwan Using a Stochastic Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(2), pages 273-303, June.
    13. Huang, Tai-Hsin & Lin, Chung-I & Chen, Kuan-Chen, 2017. "Evaluating efficiencies of Chinese commercial banks in the context of stochastic multistage technologies," Pacific-Basin Finance Journal, Elsevier, vol. 41(C), pages 93-110.
    14. Su, Hung-Chung & Kao, Ta-Wei (Daniel) & Linderman, Kevin, 2020. "Where in the supply chain network does ISO 9001 improve firm productivity?," European Journal of Operational Research, Elsevier, vol. 283(2), pages 530-540.
    15. V. K. Chetty & James J. Heckman, 2023. "Internal adjustment costs of firm-specific factors and the neoclassical theory of the firm," Empirical Economics, Springer, vol. 64(6), pages 2703-2719, June.
    16. Stefano Mainardi, 2021. "Parametric and Semiparametric Efficiency Frontiers in Fishery Analysis: Overview and Case Study on the Falkland Islands," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 169-210, June.
    17. Centorrino, Samuele & Pérez-Urdiales, María, 2023. "Maximum likelihood estimation of stochastic frontier models with endogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 82-105.
    18. Skevas, Ioannis & Skevas, Theodoros, 2021. "A generalized true random-effects model with spatially autocorrelated persistent and transient inefficiency," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1131-1142.
    19. Emilio Gómez-Déniz & Nancy Dávila-Cárdenes & Alejandro Leiva-Arcas & María J. Martínez-Patiño, 2021. "Measuring Efficiency in the Summer Olympic Games Disciplines: The Case of the Spanish Athletes," Mathematics, MDPI, vol. 9(21), pages 1-15, October.
    20. Emilio Gómez-Déniz & Jorge Pérez-Rodríguez, 2015. "Closed-form solution for a bivariate distribution in stochastic frontier models with dependent errors," Journal of Productivity Analysis, Springer, vol. 43(2), pages 215-223, April.

    More about this item

    Keywords

    Maximum likelihood estimation; Copula; Seemingly unrelated stochastic frontier regressions; Random effects;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • R3 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:60:y:2021:i:6:d:10.1007_s00181-020-01962-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.