IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v60y2021i1d10.1007_s00181-020-01935-y.html
   My bibliography  Save this article

Joint tests for dynamic and spatial effects in short panels with fixed effects and heteroskedasticity

Author

Listed:
  • Zhenlin Yang

    (Singapore Management University)

Abstract

Simple and reliable tests are proposed for testing the existence of dynamic and/or spatial effects in fixed-effects panel data models with small T and possibly heteroskedastic errors. The tests are constructed based on the adjusted quasi scores (AQS), which correct the conditional quasi scores given the initial differences to account for the effect of initial values. To improve the finite sample performance, standardized AQS tests are also derived, which are shown to have much improved finite sample properties. All the proposed tests are robust against nonnormality, but some are not robust against cross-sectional heteroskedasticity (CH). A different type of adjustments is made on the AQS functions, leading to a set of tests that are fully robust against unknown CH. Monte Carlo results show excellent finite sample performance of the standardized versions of the AQS tests.

Suggested Citation

  • Zhenlin Yang, 2021. "Joint tests for dynamic and spatial effects in short panels with fixed effects and heteroskedasticity," Empirical Economics, Springer, vol. 60(1), pages 51-92, January.
  • Handle: RePEc:spr:empeco:v:60:y:2021:i:1:d:10.1007_s00181-020-01935-y
    DOI: 10.1007/s00181-020-01935-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-020-01935-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-020-01935-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenlin Yang, 2018. "Bootstrap LM tests for higher-order spatial effects in spatial linear regression models," Empirical Economics, Springer, vol. 55(1), pages 35-68, August.
    2. Peter M. Robinson & Francesca Rossi, 2014. "Improved Lagrange multiplier tests in spatial autoregressions," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 139-164, February.
    3. Xu, Yuhong & Yang, Zhenlin, 2019. "Specification Tests for Temporal Heterogeneity in Spatial Panel Models with Fixed Effects," Economics and Statistics Working Papers 5-2019, Singapore Management University, School of Economics.
    4. Yang, Zhenlin & Li, Chenwei & Tse, Y.K., 2006. "Functional form and spatial dependence in dynamic panels," Economics Letters, Elsevier, vol. 91(1), pages 138-145, April.
    5. Alexander Chudik & M. Hashem Pesaran, 2017. "A Bias-Corrected Method of Moments Approach to Estimation of Dynamic Short-T Panels," CESifo Working Paper Series 6688, CESifo.
    6. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    7. Robinson, Peter M. & Rossi, Francesca, 2015. "Refinements in maximum likelihood inference on spatial autocorrelation in panel data," Journal of Econometrics, Elsevier, vol. 189(2), pages 447-456.
    8. Badi H. Baltagi & Zhenlin Yang, 2013. "Standardized LM tests for spatial error dependence in linear or panel regressions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 103-134, February.
    9. Taspinar, Suleyman & Dogan, Osman & Bera, Anil K., 2017. "GMM Gradient Tests for Spatial Dynamic Panel Data Models," MPRA Paper 82830, University Library of Munich, Germany.
    10. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    11. Robinson, Peter M. & Rossi, Francesca, 2015. "Refined Tests For Spatial Correlation," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1249-1280, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jieun Lee, 2022. "Testing Endogeneity of Spatial Weights Matrices in Spatial Dynamic Panel Data Models," Papers 2209.05563, arXiv.org.
    2. Ye Yang & Osman Doğan & Süleyman Taşpınar, 2023. "Observed-data DIC for spatial panel data models," Empirical Economics, Springer, vol. 64(3), pages 1281-1314, March.
    3. Qi Li & Vasilis Sarafidis & Joakim Westerlund, 2021. "Essays in honor of Professor Badi H Baltagi," Empirical Economics, Springer, vol. 60(1), pages 1-11, January.
    4. Li, Qi & Sarafidis, Vasilis & Westerlund, Joakim, 2020. "Essays in Honor of Professor Badi H Baltagi: Editorial," MPRA Paper 104751, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Francesca & Robinson, Peter M., 2023. "Higher-order least squares inference for spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 244-269.
    2. Maria Kyriacou & Peter C. B. Phillips & Francesca Rossi, 2017. "Indirect inference in spatial autoregression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 168-189, June.
    3. Francesca Rossi & Peter M. Robinson, 2020. "Higher-Order Least Squares Inference for Spatial Autoregressions," Working Papers 04/2020, University of Verona, Department of Economics.
    4. Maria Kyriacou & Peter C. B. Phillips & Francesca Rossi, 2017. "Indirect inference in spatial autoregression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 168-189, June.
    5. Lee, Jungyoon & Robinson, Peter M., 2020. "Adaptive inference on pure spatial models," Journal of Econometrics, Elsevier, vol. 216(2), pages 375-393.
    6. Taşpınar, Süleyman & Doğan, Osman & Bera, Anil K., 2017. "GMM gradient tests for spatial dynamic panel data models," Regional Science and Urban Economics, Elsevier, vol. 65(C), pages 65-88.
    7. Bera, Anil K. & Doğan, Osman & Taşpınar, Süleyman, 2018. "Simple tests for endogeneity of spatial weights matrices," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 130-142.
    8. Baltagi, Badi H. & Pirotte, Alain & Yang, Zhenlin, 2021. "Diagnostic tests for homoskedasticity in spatial cross-sectional or panel models," Journal of Econometrics, Elsevier, vol. 224(2), pages 245-270.
    9. Robinson, Peter M. & Rossi, Francesca, 2015. "Refinements in maximum likelihood inference on spatial autocorrelation in panel data," Journal of Econometrics, Elsevier, vol. 189(2), pages 447-456.
    10. Liu, Xiaodong & Prucha, Ingmar R., 2018. "A robust test for network generated dependence," Journal of Econometrics, Elsevier, vol. 207(1), pages 92-113.
    11. Su, Liangjun & Jin, Sainan, 2010. "Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 157(1), pages 18-33, July.
    12. Badi H. Baltagi & Junjie Shu, 2024. "A Survey of Spatial Unit Roots," Mathematics, MDPI, vol. 12(7), pages 1-32, March.
    13. Carlo Grillenzoni, 2024. "Forecasting Lattice and Point Spatial Data: Comparison of Unilateral and Multilateral SAR Models," Forecasting, MDPI, vol. 6(3), pages 1-18, August.
    14. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    15. Bera Anil K. & Doğan Osman & Taşpınar Süleyman, 2019. "Testing Spatial Dependence in Spatial Models with Endogenous Weights Matrices," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-33, January.
    16. Robinson, Peter M. & Rossi, Francesca, 2015. "Refined Tests For Spatial Correlation," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1249-1280, December.
    17. Li, Liyao & Yang, Zhenlin, 2020. "Estimation of fixed effects spatial dynamic panel data models with small T and unknown heteroskedasticity," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    18. Su, Liangjun, 2012. "Semiparametric GMM estimation of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 167(2), pages 543-560.
    19. Xu, Yuhong & Yang, Zhenlin, 2020. "Specification Tests for Temporal Heterogeneity in Spatial Panel Data Models with Fixed Effects," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    20. Li, Liyao & Yang, Zhenlin, 2021. "Spatial dynamic panel data models with correlated random effects," Journal of Econometrics, Elsevier, vol. 221(2), pages 424-454.

    More about this item

    Keywords

    Adjusted quasi scores; Dynamic effect; Fixed effects; Heteroskedasticity; Initial conditions; Nonnormality; Short panels; Tests; Spatial effects;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:60:y:2021:i:1:d:10.1007_s00181-020-01935-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.