IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v6y2024i3p36-717d1462479.html
   My bibliography  Save this article

Forecasting Lattice and Point Spatial Data: Comparison of Unilateral and Multilateral SAR Models

Author

Listed:
  • Carlo Grillenzoni

    (Dipartimento Di Culture Del Progetto, Universitá IUAV di Venezia, St Croce, n. 1957, 30135 Venezia, Italy)

Abstract

Spatial auto-regressive (SAR) models are widely used in geosciences for data analysis; their main feature is the presence of weight (W) matrices, which define the neighboring relationships between the spatial units. The statistical properties of parameter and forecast estimates strongly depend on the structure of such matrices. The least squares (LS) method is the most flexible and can estimate systems of large dimensions; however, it is biased in the presence of multilateral (sparse) matrices. Instead, the unilateral specification of SAR models provides triangular weight matrices that allow consistent LS estimates and sequential prediction functions. These two properties are strictly related and depend on the linear and recursive nature of the system. In this paper, we show the better performance in out-of-sample forecasting of unilateral SAR (estimated with LS), compared to multilateral SAR (estimated with maximum likelihood, ML). This conclusion is supported by numerical simulations and applications to real geological data, both on regular lattices and irregularly distributed points.

Suggested Citation

  • Carlo Grillenzoni, 2024. "Forecasting Lattice and Point Spatial Data: Comparison of Unilateral and Multilateral SAR Models," Forecasting, MDPI, vol. 6(3), pages 1-18, August.
  • Handle: RePEc:gam:jforec:v:6:y:2024:i:3:p:36-717:d:1462479
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/6/3/36/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/6/3/36/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. James P. LeSage & R. Kelley Pace, 2004. "Models for Spatially Dependent Missing Data," The Journal of Real Estate Finance and Economics, Springer, vol. 29(2), pages 233-254, September.
    3. Carlo Grillenzoni, 2008. "Statistics for image sharpening," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(2), pages 173-192, May.
    4. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    5. Robinson, Peter M. & Rossi, Francesca, 2015. "Refined Tests For Spatial Correlation," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1249-1280, December.
    6. Maria Kyriacou & Peter C. B. Phillips & Francesca Rossi, 2017. "Indirect inference in spatial autoregression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 168-189, June.
    7. Maria Kyriacou & Peter C. B. Phillips & Francesca Rossi, 2017. "Indirect inference in spatial autoregression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 168-189, June.
    8. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Francesca & Robinson, Peter M., 2023. "Higher-order least squares inference for spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 244-269.
    2. Francesca Rossi & Peter M. Robinson, 2020. "Higher-Order Least Squares Inference for Spatial Autoregressions," Working Papers 04/2020, University of Verona, Department of Economics.
    3. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    4. Lee, Jungyoon & Robinson, Peter M., 2020. "Adaptive inference on pure spatial models," Journal of Econometrics, Elsevier, vol. 216(2), pages 375-393.
    5. Bao, Yong, 2024. "Estimating spatial autoregressions under heteroskedasticity without searching for instruments," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    6. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    7. Jungyoon Lee & Peter M Robinson, 2018. "Adaptive Inference on Pure Spatial Models," STICERD - Econometrics Paper Series 596, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    8. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    9. Peter M Robinson, 2009. "Developments in the Analysis of Spatial Data," STICERD - Econometrics Paper Series 531, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. repec:asg:wpaper:1045 is not listed on IDEAS
    11. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    12. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    13. Zhenlin Yang & Liangjun Su, 2007. "Instrumental Variable Quantile Estimation of Spatial Autoregressive Models," Working Papers 05-2007, Singapore Management University, School of Economics.
    14. repec:esx:essedp:772 is not listed on IDEAS
    15. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    16. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    17. Mynbaev, Kairat T., 2010. "Asymptotic distribution of the OLS estimator for a mixed spatial model," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 733-748, March.
    18. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    19. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    20. repec:asg:wpaper:1013 is not listed on IDEAS
    21. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.
    22. Badi H. Baltagi & Junjie Shu, 2024. "A Survey of Spatial Unit Roots," Mathematics, MDPI, vol. 12(7), pages 1-32, March.
    23. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:3:p:36-717:d:1462479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.