IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v58y2020i1d10.1007_s00181-019-01708-2.html
   My bibliography  Save this article

Forecasting of recessions via dynamic probit for time series: replication and extension of Kauppi and Saikkonen (2008)

Author

Listed:
  • Byeong U. Park

    (Seoul National University)

  • Léopold Simar

    (Université Catholique de Louvain)

  • Valentin Zelenyuk

    (The University of Queensland)

Abstract

In this work, we first replicate the results of the fully parametric dynamic probit model for forecasting US recessions from Kauppi and Saikkonen (Rev Econ Stat 90(4):777–791, 2008) [which is in the spirit of Estrella and Mishkin (Rev Econ Stat 80(1):45–61, 1998) and Dueker (Rev Fed Reserve Bank St Louis 79(2):41–51, 1997)] and then contrast them to results from a nonparametric local-likelihood dynamic choice model for the same data. We then use expanded data to gain insights on whether these models could have warned the public about approach of the latest recession, associated with the Global Financial Crisis. Finally, we also apply both approaches to gain insights for 2018.

Suggested Citation

  • Byeong U. Park & Léopold Simar & Valentin Zelenyuk, 2020. "Forecasting of recessions via dynamic probit for time series: replication and extension of Kauppi and Saikkonen (2008)," Empirical Economics, Springer, vol. 58(1), pages 379-392, January.
  • Handle: RePEc:spr:empeco:v:58:y:2020:i:1:d:10.1007_s00181-019-01708-2
    DOI: 10.1007/s00181-019-01708-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-019-01708-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-019-01708-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Li, Degui & Simar, Léopold & Zelenyuk, Valentin, 2016. "Generalized nonparametric smoothing with mixed discrete and continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 424-444.
    2. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    3. Peter Temin, 2010. "The Great Recession and the Great Depression," NBER Working Papers 15645, National Bureau of Economic Research, Inc.
    4. Henderson,Daniel J. & Parmeter,Christopher F., 2015. "Applied Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9781107010253, September.
    5. Estrella, Arturo, 1998. "A New Measure of Fit for Equations with Dichotomous Dependent Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 198-205, April.
    6. Chi-Yang Chu & Daniel J. Henderson & Christopher F. Parmeter, 2015. "Plug-in Bandwidth Selection for Kernel Density Estimation with Discrete Data," Econometrics, MDPI, vol. 3(2), pages 1-16, March.
    7. repec:bla:jecsur:v:18:y:2004:i::p:409-426 is not listed on IDEAS
    8. Anna Florio, 2004. "The Asymmetric Effects of Monetary Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 18(3), pages 409-426, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    2. Camilla Mastromarco & Léopold Simar & Valentin Zelenyuk, 2021. "Predicting recessions with a frontier measure of output gap: an application to Italian economy," Empirical Economics, Springer, vol. 60(6), pages 2701-2740, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byeong U. Park & Leopold Simar & Valentin Zelenyuk, 2017. "Revisiting Forecasting of Recessions via Dynamic Probit for Time Series by Kauppi and Saikkonen (2008)," CEPA Working Papers Series WP032017, School of Economics, University of Queensland, Australia.
    2. Mastromarco, Camilla & Simar, Leopold & Wilson, Paul, 2019. "Predicting Recessions: A New Measure of Output Gap as Predictor," LIDAM Discussion Papers ISBA 2019023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Camilla Mastromarco & Léopold Simar & Valentin Zelenyuk, 2021. "Predicting recessions with a frontier measure of output gap: an application to Italian economy," Empirical Economics, Springer, vol. 60(6), pages 2701-2740, June.
    4. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    5. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    6. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    7. Dewitte, Ruben & Dumont, Michel & Merlevede, Bruno & Rayp, Glenn & Verschelde, Marijn, 2020. "Firm-Heterogeneous Biased Technological Change: A nonparametric approach under endogeneity," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1172-1182.
    8. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    9. David H. Bernstein & Christopher F. Parmeter, 2017. "Returns to Scale in Electricity Generation: Revisited and Replicated," Working Papers 2017-08, University of Miami, Department of Economics.
    10. Almeida, Alexandre N. & Bravo-Ureta, Boris E., 2019. "Agricultural productivity, shadow wages and off-farm labor decisions in Nicaragua," Economic Systems, Elsevier, vol. 43(1), pages 99-110.
    11. Battisti, Michele & Gatto, Massimo Del & Parmeter, Christopher F., 2022. "Skill-biased technical change and labor market inefficiency," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    12. Franck Sédillot, 2001. "La pente des taux contient-elle de l'information sur l'activité économique future ?," Economie & Prévision, La Documentation Française, vol. 147(1), pages 141-157.
    13. Alexey Mikhaylov, 2019. "Oil and Gas Budget Revenues in Russia after Crisis in 2015," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 375-380.
    14. Huang, Bai & Lee, Tae-Hwy & Ullah, Aman, 2020. "Combined estimation of semiparametric panel data models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 30-45.
    15. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    16. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    17. Juan Carlos Cuestas & Merike Kukk, 2017. "Asymmetries in the interaction between housing prices and housing credit in Estonia," Bank of Estonia Working Papers wp2017-2, Bank of Estonia, revised 25 May 2017.
    18. repec:spo:wpmain:info:hdl:2441/6407 is not listed on IDEAS
    19. Bronwyn H. Hall & Albert N. Link & John T. Scott, 2003. "Universities as Research Partners," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 485-491, May.
    20. Alois Guger, 2012. "Einkommensverteilung als Krisenursache," Wirtschaft und Gesellschaft - WuG, Kammer für Arbeiter und Angestellte für Wien, Abteilung Wirtschaftswissenschaft und Statistik, vol. 38(2), pages 345-356.
    21. Hasan Engin Duran & Andrzej Cieślik, 2021. "The distribution of city sizes in Turkey: A failure of Zipf’s law due to concavity," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(5), pages 1702-1719, October.

    More about this item

    Keywords

    Forecasting of recessions; Nonparametric quasi-likelihood; Local-likelihood; Dynamic discrete choice;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. Forecasting of recessions via dynamic probit for time series: replication and extension of Kauppi and Saikkonen (2008) (Emp Econ 2020) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:58:y:2020:i:1:d:10.1007_s00181-019-01708-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.