IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v49y2015i4p1521-1542.html
   My bibliography  Save this article

Analyzing superstars’ power using support vector machines

Author

Listed:
  • Ana Suárez-Vázquez
  • José Quevedo

Abstract

The main objective of this paper is to explain the influence that superstars have over spectators. The most significant contributions in the field of persuasion are discussed. This theoretical framework suggests some hypotheses that are tested using the data of an empirical study based on a survey of moviegoers. Support vector machine (SVM) is used for data analysis and pattern discovery. The SVM prediction capacity is benchmarked against that from a linear regression and multinomial logit. Results show that the SVM has considerable promise for analyzing spectators’ behavior. The results of this analysis allow us to extract some significant conclusions and implications for the process of creating and maintaining the power of a superstar. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Ana Suárez-Vázquez & José Quevedo, 2015. "Analyzing superstars’ power using support vector machines," Empirical Economics, Springer, vol. 49(4), pages 1521-1542, December.
  • Handle: RePEc:spr:empeco:v:49:y:2015:i:4:p:1521-1542
    DOI: 10.1007/s00181-015-0923-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-015-0923-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-015-0923-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karniouchina, Ekaterina V., 2011. "Impact of star and movie buzz on motion picture distribution and box office revenue," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 62-74.
    2. W. Walls, 2005. "Modeling Movie Success When ‘Nobody Knows Anything’: Conditional Stable-Distribution Analysis Of Film Returns," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 29(3), pages 177-190, August.
    3. Petty, Richard E & Cacioppo, John T & Schumann, David, 1983. "Central and Peripheral Routes to Advertising Effectiveness: The Moderating Role of Involvement," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 10(2), pages 135-146, September.
    4. Marshall, Pablo & Dockendorff, Monika & Ibáñez, Soledad, 2013. "A forecasting system for movie attendance," Journal of Business Research, Elsevier, vol. 66(10), pages 1800-1806.
    5. Bloch, Peter H & Sherrell, Daniel L & Ridgway, Nancy M, 1986. "Consumer Search: An Extended Framework," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 13(1), pages 119-126, June.
    6. Dapeng Cui & David Curry, 2005. "Prediction in Marketing Using the Support Vector Machine," Marketing Science, INFORMS, vol. 24(4), pages 595-615, January.
    7. Anita Elberse & Jehoshua Eliashberg, 2003. "Demand and Supply Dynamics for Sequentially Released Products in International Markets: The Case of Motion Pictures," Marketing Science, INFORMS, vol. 22(3), pages 329-354.
    8. Laros, Fleur J.M. & Steenkamp, Jan-Benedict E.M., 2005. "Emotions in consumer behavior: a hierarchical approach," Journal of Business Research, Elsevier, vol. 58(10), pages 1437-1445, October.
    9. Ravid, S Abraham, 1999. "Information, Blockbusters, and Stars: A Study of the Film Industry," The Journal of Business, University of Chicago Press, vol. 72(4), pages 463-492, October.
    10. W. Walls, 2009. "Screen wars, star wars, and sequels," Empirical Economics, Springer, vol. 37(2), pages 447-461, October.
    11. Evgeniou, Theodoros & Poggio, Tomaso & Pontil, Massimiliano & Verri, Alessandro, 2002. "Regularization and statistical learning theory for data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 421-432, February.
    12. De Vany, A. & Walls, W.D., 1999. ""Uncertainty in the Movies: Does Star Power Reduce the Terror of the Box Office?"," Papers 98-99-10, California Irvine - School of Social Sciences.
    13. Alan Collins & Chris Hand & Martin C. Snell, 2002. "What makes a blockbuster? Economic analysis of film success in the United Kingdom," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 23(6), pages 343-354.
    14. Steven Albert, 1998. "Movie Stars and the Distribution of Financially Successful Films in the Motion Picture Industry," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 22(4), pages 249-270, December.
    15. Randy Nelson & Robert Glotfelty, 2012. "Movie stars and box office revenues: an empirical analysis," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 36(2), pages 141-166, May.
    16. Ignacio Redondo & Morris Holbrook, 2010. "Modeling the appeal of movie features to demographic segments of theatrical demand," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 34(4), pages 299-315, November.
    17. Arthur De Vany & W. Walls, 1999. "Uncertainty in the Movie Industry: Does Star Power Reduce the Terror of the Box Office?," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 23(4), pages 285-318, November.
    18. Hoyer, Wayne D & Brown, Steven P, 1990. "Effects of Brand Awareness on Choice for a Common, Repeat-Purchase Product," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 17(2), pages 141-148, September.
    19. Allègre Hadida, 2010. "Commercial success and artistic recognition of motion picture projects," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 34(1), pages 45-80, February.
    20. Mohanbir S. Sawhney & Jehoshua Eliashberg, 1996. "A Parsimonious Model for Forecasting Gross Box-Office Revenues of Motion Pictures," Marketing Science, INFORMS, vol. 15(2), pages 113-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mi (Jamie) Zhou & Baozhou Lu & Weiguo (Patrick) Fan & G. Alan Wang, 2018. "Project description and crowdfunding success: an exploratory study," Information Systems Frontiers, Springer, vol. 20(2), pages 259-274, April.
    2. Mi (Jamie) Zhou & Baozhou Lu & Weiguo (Patrick) Fan & G. Alan Wang, 0. "Project description and crowdfunding success: an exploratory study," Information Systems Frontiers, Springer, vol. 0, pages 1-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordi McKenzie, 2023. "The economics of movies (revisited): A survey of recent literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 480-525, April.
    2. Hofmann, Julian & Clement, Michel & Völckner, Franziska & Hennig-Thurau, Thorsten, 2017. "Empirical generalizations on the impact of stars on the economic success of movies," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 442-461.
    3. Kang, Lili & Peng, Fei & Anwar, Sajid, 2022. "All that glitters is not gold: Do movie quality and contents influence box-office revenues in China?," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 492-510.
    4. Frederick Derrick & Nancy Williams & Charles Scott, 2014. "A two-stage proxy variable approach to estimating movie box office receipts," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 38(2), pages 173-189, May.
    5. Gaenssle Sophia & Budzinski Oliver & Astakhova Daria, 2018. "Conquering the Box Office: Factors Influencing Success of International Movies in Russia," Review of Network Economics, De Gruyter, vol. 17(4), pages 245-266, December.
    6. Fei Peng & Lili Kang & Sajid Anwar & Xue Li, 2019. "Star power and box office revenues: evidence from China," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 43(2), pages 247-278, June.
    7. Ana Suárez-Vázquez, 2011. "Critic power or star power? The influence of hallmarks of quality of motion pictures: an experimental approach," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 35(2), pages 119-135, May.
    8. Ana Suarez-Vazquez & Elena Montañés-Roces, 2017. "Superstars Power, Mining the Paths to Stars’ Persuasion," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 67-81, January.
    9. Allègre Hadida, 2010. "Commercial success and artistic recognition of motion picture projects," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 34(1), pages 45-80, February.
    10. Brinja Meiseberg & Thomas Ehrmann, 2013. "Diversity in teams and the success of cultural products," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 37(1), pages 61-86, February.
    11. Jordi McKenzie, 2010. "Do 'African American' films perform better or worse at the box office? An empirical analysis of motion picture revenues and profits," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1559-1564.
    12. Jehoshua Eliashberg & Anita Elberse & Mark A.A.M. Leenders, 2006. "The Motion Picture Industry: Critical Issues in Practice, Current Research, and New Research Directions," Marketing Science, INFORMS, vol. 25(6), pages 638-661, 11-12.
    13. Jordi McKenzie, 2009. "Revealed word-of-mouth demand and adaptive supply: survival of motion pictures at the Australian box office," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 33(4), pages 279-299, November.
    14. Darren Filson & James H. Havlicek, 2018. "The performance of global film franchises: installment effects and extension decisions," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 42(3), pages 447-467, August.
    15. Angela Liu & Yong Liu & Tridib Mazumdar, 2014. "Star power in the eye of the beholder: A study of the influence of stars in the movie industry," Marketing Letters, Springer, vol. 25(4), pages 385-396, December.
    16. Angela (Xia) Liu & Tridib Mazumdar & Bo Li, 2015. "Counterfactual Decomposition of Movie Star Effects with Star Selection," Management Science, INFORMS, vol. 61(7), pages 1704-1721, July.
    17. Wen-jhan Jane & Wei-peng Chen & Yuan-lin Hsu, 2015. "The impact of deregulation on the movie box office after Taiwan’s entry into the WTO: the difference-in-differences estimation," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 5(2), pages 289-308, December.
    18. repec:lan:wpaper:1176 is not listed on IDEAS
    19. repec:lan:wpaper:1111 is not listed on IDEAS
    20. repec:lan:wpaper:1089 is not listed on IDEAS
    21. Jordi McKenzie, 2010. "How do theatrical box office revenues affect DVD retail sales? Australian empirical evidence," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 34(3), pages 159-179, August.
    22. Clement, Michel & Wu, Steven & Fischer, Marc, 2014. "Empirical generalizations of demand and supply dynamics for movies," International Journal of Research in Marketing, Elsevier, vol. 31(2), pages 207-223.
    23. Randy Nelson & Robert Glotfelty, 2012. "Movie stars and box office revenues: an empirical analysis," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 36(2), pages 141-166, May.

    More about this item

    Keywords

    Cinema market; Star power; Persuasion; Machine learning; Support vector machine; M3; Z1; C6;
    All these keywords.

    JEL classification:

    • M3 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising
    • Z1 - Other Special Topics - - Cultural Economics
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:49:y:2015:i:4:p:1521-1542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.