IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v59y2015icp202-219.html
   My bibliography  Save this article

Liquidity-adjusted Intraday Value at Risk modeling and risk management: An application to data from Deutsche Börse

Author

Listed:
  • Dionne, Georges
  • Pacurar, Maria
  • Zhou, Xiaozhou

Abstract

This paper develops a high-frequency risk measure: the Liquidity-adjusted Intraday Value at Risk (LIVaR). Our objective is to explicitly consider the endogenous liquidity dimension associated with order size. By reconstructing the open Limit Order Book of Deutsche Börse, changes in the tick-by-tick (ex-ante) frictionless return and actual return are modeled jointly. The risk related to the ex-ante liquidity premium is then quantified. Our model can be used to identify the impact of ex-ante liquidity risk on total risk, and to provide an estimation of the VaR for the actual return at a point in time. In our sample, liquidity risk can account for up to 32% of total risk depending on order size.

Suggested Citation

  • Dionne, Georges & Pacurar, Maria & Zhou, Xiaozhou, 2015. "Liquidity-adjusted Intraday Value at Risk modeling and risk management: An application to data from Deutsche Börse," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 202-219.
  • Handle: RePEc:eee:jbfina:v:59:y:2015:i:c:p:202-219
    DOI: 10.1016/j.jbankfin.2015.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426615001697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2015.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
    2. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2005. "Limit Order Book as a Market for Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1171-1217.
    3. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    4. Stanislav Anatolyev & Dmitry Shakin, 2007. "Trade intensity in the Russian stock market: dynamics, distribution and determinants," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 87-104.
    5. Héléna Beltran-Lopez & Pierre Giot & Joachim Grammig, 2009. "Commonalities in the order book," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(3), pages 209-242, September.
    6. Glosten, Lawrence R. & Harris, Lawrence E., 1988. "Estimating the components of the bid/ask spread," Journal of Financial Economics, Elsevier, vol. 21(1), pages 123-142, May.
    7. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    8. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    9. Bloomfield, Robert & O'Hara, Maureen & Saar, Gideon, 2005. "The "make or take" decision in an electronic market: Evidence on the evolution of liquidity," Journal of Financial Economics, Elsevier, vol. 75(1), pages 165-199, January.
    10. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    11. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    12. Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
    13. Domowitz, Ian & Hansch, Oliver & Wang, Xiaoxin, 2005. "Liquidity commonality and return co-movement," Journal of Financial Markets, Elsevier, vol. 8(4), pages 351-376, November.
    14. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    15. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    16. Bacidore, Jeffrey & Ross, Katharine & Sofianos, George, 2003. "Quantifying market order execution quality at the New York stock exchange," Journal of Financial Markets, Elsevier, vol. 6(3), pages 281-307, May.
    17. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    18. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    19. Ziggel, Daniel & Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2014. "A new set of improved Value-at-Risk backtests," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 29-41.
    20. Ioanid Rosu, 2009. "A Dynamic Model of the Limit Order Book," Post-Print hal-00515873, HAL.
    21. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    22. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    23. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    24. Pierre Giot & Joachim Grammig, 2006. "How large is liquidity risk in an automated auction market?," Empirical Economics, Springer, vol. 30(4), pages 867-887, January.
    25. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    26. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    27. Battalio, Robert & Hatch, Brian & Jennings, Robert, 2003. "All else equal?: a multidimensional analysis of retail, market order execution quality," Journal of Financial Markets, Elsevier, vol. 6(2), pages 143-162, April.
    28. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    29. Harold Demsetz, 1968. "The Cost of Transacting," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 82(1), pages 33-53.
    30. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    31. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    32. Handa, Puneet & Schwartz, Robert A, 1996. "Limit Order Trading," Journal of Finance, American Finance Association, vol. 51(5), pages 1835-1861, December.
    33. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    34. Ron Kaniel & Hong Liu, 2006. "So What Orders Do Informed Traders Use?," The Journal of Business, University of Chicago Press, vol. 79(4), pages 1867-1914, July.
    35. Timotheos Angelidis & Alexandros Benos, 2006. "Liquidity adjusted value-at-risk based on the components of the bid-ask spread," Applied Financial Economics, Taylor & Francis Journals, vol. 16(11), pages 835-851.
    36. Alain P. Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Clara Vega, 2014. "Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 69(5), pages 2045-2084, October.
    37. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    38. Ioanid Rosu, 2009. "A Dynamic Model of the Limit Order Book," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4601-4641, November.
    39. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    40. Goyenko, Ruslan Y. & Holden, Craig W. & Trzcinka, Charles A., 2009. "Do liquidity measures measure liquidity?," Journal of Financial Economics, Elsevier, vol. 92(2), pages 153-181, May.
    41. E. M. R. A. Engel, 1984. "A Unified Approach To The Study Of Sums, Products, Time‐Aggregation And Other Functions Of Arma Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(3), pages 159-171, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dionne, Georges & Zhou, Xiaozhou, 2016. "The Dynamics of Ex-ante High-Frequency Liquidity: An Empirical Analysis," Working Papers 15-5, HEC Montreal, Canada Research Chair in Risk Management.
    2. Helton Saulo & Jeremias Leão & Víctor Leiva & Robert G. Aykroyd, 2019. "Birnbaum–Saunders autoregressive conditional duration models applied to high-frequency financial data," Statistical Papers, Springer, vol. 60(5), pages 1605-1629, October.
    3. Theo Berger & Christina Uffmann, 2021. "Assessing liquidity‐adjusted risk forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1179-1189, November.
    4. Ramos, Henrique Pinto & Righi, Marcelo Brutti, 2020. "Liquidity, implied volatility and tail risk: A comparison of liquidity measures," International Review of Financial Analysis, Elsevier, vol. 69(C).
    5. Georges Dionne & Xiaozhou Zhou, 2020. "The dynamics of ex-ante weighted spread: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 593-617, April.
    6. Zhang, Heng-Guo & Su, Chi-Wei & Song, Yan & Qiu, Shuqi & Xiao, Ran & Su, Fei, 2017. "Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model," Economic Modelling, Elsevier, vol. 67(C), pages 355-367.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georges Dionne & Xiaozhou Zhou, 2020. "The dynamics of ex-ante weighted spread: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 593-617, April.
    2. Dionne, Georges & Zhou, Xiaozhou, 2016. "The Dynamics of Ex-ante High-Frequency Liquidity: An Empirical Analysis," Working Papers 15-5, HEC Montreal, Canada Research Chair in Risk Management.
    3. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    4. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    5. Murphy Jun Jie Lee, 2013. "The Microstructure of Trading Processes on the Singapore Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4, July-Dece.
    6. Menkhoff, Lukas & Osler, Carol L. & Schmeling, Maik, 2010. "Limit-order submission strategies under asymmetric information," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2665-2677, November.
    7. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2015, January-A.
    8. Wong, Woon K. & Tan, Dijun & Tian, Yixiang, 2009. "Informed trading and liquidity in the Shanghai Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 66-73, March.
    9. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    10. Murphy Jun Jie Lee, 2013. "The Microstructure of Trading Processes on the Singapore Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2013, January-A.
    11. Roberto Pascual & David Veredas, 2010. "Does the Open Limit Order Book Matter in Explaining Informational Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 57-87, Winter.
    12. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 22, July-Dece.
    13. Denisa Georgiana Banulescu & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2013. "High-Frequency Risk Measures," Working Papers halshs-00859456, HAL.
    14. Daniel Havran & Kata Varadi, 2015. "Price Impact and the Recovery of the Limit Order Book: Why Should We Care About Informed Liquidity Providers?," CERS-IE WORKING PAPERS 1540, Institute of Economics, Centre for Economic and Regional Studies.
    15. Allen, David & Lazarov, Zdravetz & McAleer, Michael & Peiris, Shelton, 2009. "Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2535-2555.
    16. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    17. Dimitri Vayanos & Jiang Wang, 2012. "Market Liquidity -- Theory and Empirical Evidence," NBER Working Papers 18251, National Bureau of Economic Research, Inc.
    18. Cenesizoglu, Tolga & Dionne, Georges & Zhou, Xiaozhou, 2022. "Asymmetric effects of the limit order book on price dynamics," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 77-98.
    19. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    20. Yiing Fei Tan & Kok Haur Ng & You Beng Koh & Shelton Peiris, 2022. "Modelling Trade Durations Using Dynamic Logarithmic Component ACD Model with Extended Generalised Inverse Gaussian Distribution," Mathematics, MDPI, vol. 10(10), pages 1-20, May.
    21. Chen, Tao & Li, Jie & Cai, Jun, 2008. "Information content of inter-trade time on the Chinese market," Emerging Markets Review, Elsevier, vol. 9(3), pages 174-193, September.

    More about this item

    Keywords

    Liquidity-adjusted Intraday Value at Risk; Tick-by-tick data; Log-ACD-VARMA-MGARCH; Ex-ante liquidity premium; Limit Order Book;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:59:y:2015:i:c:p:202-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.