IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v23y2023i1d10.1007_s10660-022-09584-2.html
   My bibliography  Save this article

Online Advertising and Real Estate sales: evidence from the Housing Market

Author

Listed:
  • Xiuzhi Zhang

    (Renmin University of China)

  • Ying Zhang

    (University of Auckland)

  • Zhijie Lin

    (Tsinghua University)

Abstract

Despite the popular use of online advertising by marketers, little is known about its role in the real estate market. This research aims to investigate how online advertising affects the sales of new houses and explores potential contingent factors and the underlying mechanism. Based on a rich secondary data set and econometric models, we find that online advertising increases the sales of new houses, and the effect is stronger with lower housing prices, higher residential incomes, and lower-tier cities. Additionally, the mechanism is that advertising generates an impact via processes, such as lowering housing prices, attracting more immigrants, and reducing emigration. Lastly, the spillover effect of online advertising may not exist in the housing market. We discuss theoretical contributions and important implications to practitioners and policy makers.

Suggested Citation

  • Xiuzhi Zhang & Ying Zhang & Zhijie Lin, 2023. "Online Advertising and Real Estate sales: evidence from the Housing Market," Electronic Commerce Research, Springer, vol. 23(1), pages 605-622, March.
  • Handle: RePEc:spr:elcore:v:23:y:2023:i:1:d:10.1007_s10660-022-09584-2
    DOI: 10.1007/s10660-022-09584-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-022-09584-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-022-09584-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Liu & Jianqing Chen & Andrew B. Whinston, 2010. "Ex Ante Information and the Design of Keyword Auctions," Information Systems Research, INFORMS, vol. 21(1), pages 133-153, March.
    2. Ji Wu & Haichuan Zhao & Haipeng (Allan) Chen, 2021. "Coupons or Free Shipping? Effects of Price Promotion Strategies on Online Review Ratings," Information Systems Research, INFORMS, vol. 32(2), pages 633-652, June.
    3. Robert C. Blattberg & Abel P. Jeuland, 1981. "A Micromodeling Approach to Investigate the Advertising-Sales Relationship," Management Science, INFORMS, vol. 27(9), pages 988-1005, September.
    4. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    5. Lorin M. Hitt, 1999. "Information Technology and Firm Boundaries: Evidence from Panel Data," Information Systems Research, INFORMS, vol. 10(2), pages 134-149, June.
    6. Bayer, Emanuel & Srinivasan, Shuba & Riedl, Edward J. & Skiera, Bernd, 2020. "The impact of online display advertising and paid search advertising relative to offline advertising on firm performance and firm value," International Journal of Research in Marketing, Elsevier, vol. 37(4), pages 789-804.
    7. Francesco Decarolis & Maris Goldmanis & Antonio Penta, 2020. "Marketing Agencies and Collusive Bidding in Online Ad Auctions," Management Science, INFORMS, vol. 66(10), pages 4433-4454, October.
    8. Robert B. Ekelund & Franklin G. Mixon & Rand W. Ressler, 1995. "Advertising and information: an empirical study of search, experience and credence goods," Journal of Economic Studies, Emerald Group Publishing, vol. 22(2), pages 33-43, May.
    9. Krainer, John, 2001. "A Theory of Liquidity in Residential Real Estate Markets," Journal of Urban Economics, Elsevier, vol. 49(1), pages 32-53, January.
    10. Leung, Charles, 2004. "Macroeconomics and housing: a review of the literature," Journal of Housing Economics, Elsevier, vol. 13(4), pages 249-267, December.
    11. Xiaomeng Du & Meng Su & Xiaoquan (Michael) Zhang & Xiaona Zheng, 2017. "Bidding for Multiple Keywords in Sponsored Search Advertising: Keyword Categories and Match Types," Information Systems Research, INFORMS, vol. 28(4), pages 711-722, December.
    12. Ashish Agarwal & Tridas Mukhopadhyay, 2016. "The Impact of Competing Ads on Click Performance in Sponsored Search," Information Systems Research, INFORMS, vol. 27(3), pages 538-557.
    13. Ashish Agarwal & Kartik Hosanagar & Michael D. Smith, 2015. "Do Organic Results Help or Hurt Sponsored Search Performance?," Information Systems Research, INFORMS, vol. 26(4), pages 695-713, December.
    14. Clara H. Mulder, 2006. "Population and housing," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(13), pages 401-412.
    15. Haoyan Sun & Ming Fan & Yong Tan, 2020. "An Empirical Analysis of Seller Advertising Strategies in an Online Marketplace," Information Systems Research, INFORMS, vol. 31(1), pages 37-56, March.
    16. Juan Feng & Jinhong Xie, 2012. "Research Note ---Performance-Based Advertising: Advertising as Signals of Product Quality," Information Systems Research, INFORMS, vol. 23(3-part-2), pages 1030-1041, September.
    17. Yu (Jeffrey) Hu & Jiwoong Shin & Zhulei Tang, 2016. "Incentive Problems in Performance-Based Online Advertising Pricing: Cost per Click vs. Cost per Action," Management Science, INFORMS, vol. 62(7), pages 2022-2038, July.
    18. Nelson, Philip, 1974. "Advertising as Information," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 729-754, July/Aug..
    19. Vilma Todri & Anindya Ghose & Param Vir Singh, 2020. "Trade-Offs in Online Advertising: Advertising Effectiveness and Annoyance Dynamics Across the Purchase Funnel," Information Systems Research, INFORMS, vol. 31(1), pages 102-125, March.
    20. Kevin J. Boudreau & Lars B. Jeppesen, 2015. "Unpaid crowd complementors: The platform network effect mirage," Strategic Management Journal, Wiley Blackwell, vol. 36(12), pages 1761-1777, December.
    21. Avi Goldfarb & Catherine Tucker, 2011. "Search Engine Advertising: Channel Substitution When Pricing Ads to Context," Management Science, INFORMS, vol. 57(3), pages 458-470, March.
    22. Erik Brynjolfsson & Lorin Hitt, 1996. "Paradox Lost? Firm-Level Evidence on the Returns to Information Systems Spending," Management Science, INFORMS, vol. 42(4), pages 541-558, April.
    23. Theodore Groves & Yongmiao Hong & John McMillan & Barry Naughton, 1994. "Autonomy and Incentives in Chinese State Enterprises," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(1), pages 183-209.
    24. Hollis, Nigel, 2005. "Ten Years of Learning on How Online Advertising Builds Brands," Journal of Advertising Research, Cambridge University Press, vol. 45(2), pages 255-268, June.
    25. Jeffrey M. Wooldridge, 2015. "Control Function Methods in Applied Econometrics," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 420-445.
    26. Frank M. Bass & Norris Bruce & Sumit Majumdar & B. P. S. Murthi, 2007. "Wearout Effects of Different Advertising Themes: A Dynamic Bayesian Model of the Advertising-Sales Relationship," Marketing Science, INFORMS, vol. 26(2), pages 179-195, 03-04.
    27. Shijie Lu & Sha Yang, 2017. "Investigating the Spillover Effect of Keyword Market Entry in Sponsored Search Advertising," Marketing Science, INFORMS, vol. 36(6), pages 976-998, November.
    28. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    29. C. Clark & Ulrich Doraszelski & Michaela Draganska, 2009. "The effect of advertising on brand awareness and perceived quality: An empirical investigation using panel data," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 207-236, June.
    30. Sha Yang & Anindya Ghose, 2010. "Analyzing the Relationship Between Organic and Sponsored Search Advertising: Positive, Negative, or Zero Interdependence?," Marketing Science, INFORMS, vol. 29(4), pages 602-623, 07-08.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carsten D. Schultz, 2020. "The impact of ad positioning in search engine advertising: a multifaceted decision problem," Electronic Commerce Research, Springer, vol. 20(4), pages 945-968, December.
    2. Siddharth Bhattacharya & Jing Gong & Sunil Wattal, 2022. "Competitive Poaching in Search Advertising: Two Randomized Field Experiments," Information Systems Research, INFORMS, vol. 33(2), pages 599-619, June.
    3. Mengzhou Zhuang & Eric (Er) Fang & Jongkuk Lee & Xiaoling Li, 2021. "The Effects of Price Rank on Clicks and Conversions in Product List Advertising on Online Retail Platforms," Information Systems Research, INFORMS, vol. 32(4), pages 1412-1430, December.
    4. Soberman, David A. & Xiang, Yi, 2022. "Designing the content of advertising in a differentiated market," International Journal of Research in Marketing, Elsevier, vol. 39(1), pages 190-211.
    5. Joseph Golden & John Joseph Horton, 2021. "The Effects of Search Advertising on Competitors: An Experiment Before a Merger," Management Science, INFORMS, vol. 67(1), pages 342-362, January.
    6. Abou Nabout, Nadia & Skiera, Bernd, 2012. "Return on Quality Improvements in Search Engine Marketing," Journal of Interactive Marketing, Elsevier, vol. 26(3), pages 141-154.
    7. Haoyan Sun & Ming Fan & Yong Tan, 2020. "An Empirical Analysis of Seller Advertising Strategies in an Online Marketplace," Information Systems Research, INFORMS, vol. 31(1), pages 37-56, March.
    8. Anindya Ghose & Vilma Todri, 2015. "Towards a Digital Attribution Model: Measuring the Impact of Display Advertising on Online Consumer Behavior," Working Papers 15-15, NET Institute.
    9. Darius Schlangenotto & Martin Poniatowski & Dennis Kundisch, 2018. "What Drives Paid Search Success: A Systematic Literature Review," Working Papers Dissertations 31, Paderborn University, Faculty of Business Administration and Economics.
    10. Vilma Todri & Anindya Ghose & Param Vir Singh, 2020. "Trade-Offs in Online Advertising: Advertising Effectiveness and Annoyance Dynamics Across the Purchase Funnel," Information Systems Research, INFORMS, vol. 31(1), pages 102-125, March.
    11. Kinshuk Jerath & Liye Ma & Young-Hoon Park & Kannan Srinivasan, 2011. "A "Position Paradox" in Sponsored Search Auctions," Marketing Science, INFORMS, vol. 30(4), pages 612-627, July.
    12. Burguet, Roberto & Caminal, Ramon & Ellman, Matthew, 2015. "In Google we trust?," International Journal of Industrial Organization, Elsevier, vol. 39(C), pages 44-55.
    13. Du, Ruihuan & Zhong, Yu & Nair, Harikesh S. & Cui, Bo & Shou, Ruyang, 2019. "Causally Driven Incremental Multi Touch Attribution Using a Recurrent Neural Network," Research Papers 3761, Stanford University, Graduate School of Business.
    14. Kireyev, Pavel & Pauwels, Koen & Gupta, Sunil, 2016. "Do display ads influence search? Attribution and dynamics in online advertising," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 475-490.
    15. Avi Goldfarb & Catherine Tucker, 2011. "Online Display Advertising: Targeting and Obtrusiveness," Marketing Science, INFORMS, vol. 30(3), pages 389-404, 05-06.
    16. Mingyu Joo & Kenneth C. Wilbur & Bo Cowgill & Yi Zhu, 2014. "Television Advertising and Online Search," Management Science, INFORMS, vol. 60(1), pages 56-73, January.
    17. Ashish Agarwal & Tridas Mukhopadhyay, 2016. "The Impact of Competing Ads on Click Performance in Sponsored Search," Information Systems Research, INFORMS, vol. 27(3), pages 538-557.
    18. Peter Landry, 2021. "Keywords, limited consideration, and organic product listings," Quantitative Marketing and Economics (QME), Springer, vol. 19(3), pages 505-566, December.
    19. Veronica Marotta & Yue Wu & Kaifu Zhang & Alessandro Acquisti, 2022. "The Welfare Impact of Targeted Advertising Technologies," Information Systems Research, INFORMS, vol. 33(1), pages 131-151, March.
    20. Juan Feng & Jinhong Xie, 2012. "Research Note ---Performance-Based Advertising: Advertising as Signals of Product Quality," Information Systems Research, INFORMS, vol. 23(3-part-2), pages 1030-1041, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:23:y:2023:i:1:d:10.1007_s10660-022-09584-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.