IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v24y2022i4d10.1007_s10796-021-10130-y.html
   My bibliography  Save this article

The Interplay Between Investor Activity on Virtual Investment Community and the Trading Dynamics: Evidence From the Bitcoin Market

Author

Listed:
  • Peng Xie

    (California State University, East Bay)

Abstract

Virtual investment community has become an important information source for investors. This study contributes to the related literature by investigating the endogenous interplay between investor activity on the virtual investment community and the market trading dynamics using a vector autoregressive framework to analyze an hourly dataset collected from the Bitcoin market. The main results suggest that the sentiment and the posting frequency of virtual investment community messages are largely driven by the past market outcomes, but they provide limited value-relevant information for future price prediction. It is also demonstrated that when investors express conflicting opinions, or when their discussions exhibit a lack of diversity, their incentive to trade decreases, resulting in low trading volume. Theoretical contributions and practical implications are discussed.

Suggested Citation

  • Peng Xie, 2022. "The Interplay Between Investor Activity on Virtual Investment Community and the Trading Dynamics: Evidence From the Bitcoin Market," Information Systems Frontiers, Springer, vol. 24(4), pages 1287-1303, August.
  • Handle: RePEc:spr:infosf:v:24:y:2022:i:4:d:10.1007_s10796-021-10130-y
    DOI: 10.1007/s10796-021-10130-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-021-10130-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-021-10130-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    2. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    3. A. Geethapriya & S. Valli, 2021. "An Enhanced Approach to Map Domain-Specific Words in Cross-Domain Sentiment Analysis," Information Systems Frontiers, Springer, vol. 23(3), pages 791-805, June.
    4. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    5. Bin Gu & Prabhudev Konana & Rajagopal Raghunathan & Hsuanwei Michelle Chen, 2014. "Research Note —The Allure of Homophily in Social Media: Evidence from Investor Responses on Virtual Communities," Information Systems Research, INFORMS, vol. 25(3), pages 604-617, September.
    6. Wei-Lun Chang & Yi-Pei Chen, 2019. "Way too sentimental? a credible model for online reviews," Information Systems Frontiers, Springer, vol. 21(2), pages 453-468, April.
    7. Qianwen Xu & Victor Chang & Ching-Hsien Hsu, 2020. "Event Study and Principal Component Analysis Based on Sentiment Analysis – A Combined Methodology to Study the Stock Market with an Empirical Study," Information Systems Frontiers, Springer, vol. 22(5), pages 1021-1037, October.
    8. Brock, William A. & Kleidon, Allan W., 1992. "Periodic market closure and trading volume : A model of intraday bids and asks," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 451-489.
    9. Xueming Luo & Jie Zhang & Wenjing Duan, 2013. "Social Media and Firm Equity Value," Information Systems Research, INFORMS, vol. 24(1), pages 146-163, March.
    10. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    11. Gediminas Adomavicius & Jesse Bockstedt & Alok Gupta, 2012. "Modeling Supply-Side Dynamics of IT Components, Products, and Infrastructure: An Empirical Analysis Using Vector Autoregression," Information Systems Research, INFORMS, vol. 23(2), pages 397-417, June.
    12. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    13. C. Baek & M. Elbeck, 2015. "Bitcoins as an investment or speculative vehicle? A first look," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 30-34, January.
    14. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    15. Kawaljeet Kaur Kapoor & Kuttimani Tamilmani & Nripendra P. Rana & Pushp Patil & Yogesh K. Dwivedi & Sridhar Nerur, 2018. "Advances in Social Media Research: Past, Present and Future," Information Systems Frontiers, Springer, vol. 20(3), pages 531-558, June.
    16. Wang, Jiang, 1994. "A Model of Competitive Stock Trading Volume," Journal of Political Economy, University of Chicago Press, vol. 102(1), pages 127-168, February.
    17. Angela K. Davis & Jeremy M. Piger & Lisa M. Sedor, 2012. "Beyond the Numbers: Measuring the Information Content of Earnings Press Release Language," Contemporary Accounting Research, John Wiley & Sons, vol. 29(3), pages 845-868, September.
    18. Xueming Luo, 2009. "Quantifying the Long-Term Impact of Negative Word of Mouth on Cash Flows and Stock Prices," Marketing Science, INFORMS, vol. 28(1), pages 148-165, 01-02.
    19. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    20. Juheng Zhang & Selwyn Piramuthu, 2018. "Product recommendation with latent review topics," Information Systems Frontiers, Springer, vol. 20(3), pages 617-625, June.
    21. Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
    22. David H. Solomon, 2012. "Selective Publicity and Stock Prices," Journal of Finance, American Finance Association, vol. 67(2), pages 599-638, April.
    23. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    24. Shalak Mendon & Pankaj Dutta & Abhishek Behl & Stefan Lessmann, 2021. "A Hybrid Approach of Machine Learning and Lexicons to Sentiment Analysis: Enhanced Insights from Twitter Data of Natural Disasters," Information Systems Frontiers, Springer, vol. 23(5), pages 1145-1168, September.
    25. Suominen, Matti, 2001. "Trading Volume and Information Revelation in Stock Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(4), pages 545-565, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Xie & Jiming Wu & Hongwei Du, 2019. "The relative importance of competition to contagion: evidence from the digital currency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-19, December.
    2. Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1187-1230, September.
    3. Ingrid E. Fisher & Margaret R. Garnsey & Mark E. Hughes, 2016. "Natural Language Processing in Accounting, Auditing and Finance: A Synthesis of the Literature with a Roadmap for Future Research," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(3), pages 157-214, July.
    4. Qingbin Meng & Congyi Ju & Qinghua Huang & Song Wang, 2023. "The informativeness of investor communication with corporate insiders: Evidence from China," International Finance, Wiley Blackwell, vol. 26(2), pages 189-207, August.
    5. Aysan, Ahmet Faruk & Caporin, Massimiliano & Cepni, Oguzhan, 2024. "Not all words are equal: Sentiment and jumps in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    6. Benjamin Clapham & Michael Siering & Peter Gomber, 2021. "Popular News Are Relevant News! How Investor Attention Affects Algorithmic Decision-Making and Decision Support in Financial Markets," Information Systems Frontiers, Springer, vol. 23(2), pages 477-494, April.
    7. Bask, Mikael & Forsberg, Lars & Östling, Andreas, 2024. "Media sentiment and stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 303-311.
    8. Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
    9. Steven Heston & Nitish R. Sinha, 2016. "News versus Sentiment : Predicting Stock Returns from News Stories," Finance and Economics Discussion Series 2016-048, Board of Governors of the Federal Reserve System (U.S.).
    10. Seshadri Tirunillai & Gerard J. Tellis, 2012. "Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," Marketing Science, INFORMS, vol. 31(2), pages 198-215, March.
    11. Loughran, Tim & McDonald, Bill & Pragidis, Ioannis, 2019. "Assimilation of oil news into prices," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 105-118.
    12. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    13. Christina Bannier & Thomas Pauls & Andreas Walter, 2019. "Content analysis of business communication: introducing a German dictionary," Journal of Business Economics, Springer, vol. 89(1), pages 79-123, February.
    14. Buehlmaier, Matthias M. M. & Zechner, Josef, 2016. "Financial media, price discovery, and merger arbitrage," CFS Working Paper Series 551, Center for Financial Studies (CFS).
    15. Kothari, Pratik & Chance, Don M. & Ferris, Stephen P., 2021. "Bragging rights: Does corporate boasting imply value creation?," Journal of Corporate Finance, Elsevier, vol. 67(C).
    16. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    17. Eryka Probierz & Adam Galuszka & Katarzyna Klimczak & Karol Jedrasiak & Tomasz Wisniewski & Tomasz Dzida, 2021. "Financial Sentiment on Twitter's Community and it's Connection to Polish Stock Market Movements in Context of Behavior Modelling," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 56-65.
    18. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
    19. Patrick Houlihan & Germán G. Creamer, 2021. "Leveraging Social Media to Predict Continuation and Reversal in Asset Prices," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 433-453, February.
    20. Chau, Michael & Lin, Chih-Yung & Lin, Tse-Chun, 2020. "Wisdom of crowds before the 2007–2009 global financial crisis," Journal of Financial Stability, Elsevier, vol. 48(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:24:y:2022:i:4:d:10.1007_s10796-021-10130-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.