IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v17y2017i1d10.1007_s10660-016-9242-7.html
   My bibliography  Save this article

Does big data mean big knowledge? Integration of big data analysis and conceptual model for social commerce research

Author

Listed:
  • Xuemei Tian

    (Swinburne University of Technology)

  • Libo Liu

    (Swinburne University of Technology)

Abstract

The Big Data era has descended on many communities, from governments and e-commerce to health organizations. Information systems designers face great opportunities and challenges in developing a holistic big data research approach for the new analytics savvy generation. In addition business intelligence is largely utilized in the business community and thus can leverage the opportunities from the abundant data and domain-specific analytics in many critical areas. The aim of this paper is to assess the relevance of these trends in the current business context through evidence-based documentation of current and emerging applications as well as their wider business implications. In this paper, we use BigML to examine how the two social information channels (i.e., friends-based opinion leaders-based social information) influence consumer purchase decisions on social commerce sites. We undertake an empirical study in which we integrate a framework and a theoretical model for big data analysis. We conduct an empirical study to demonstrate that big data analytics can be successfully combined with a theoretical model to produce more robust and effective consumer purchase decisions. The results offer important and interesting insights into IS research and practice.

Suggested Citation

  • Xuemei Tian & Libo Liu, 2017. "Does big data mean big knowledge? Integration of big data analysis and conceptual model for social commerce research," Electronic Commerce Research, Springer, vol. 17(1), pages 169-183, March.
  • Handle: RePEc:spr:elcore:v:17:y:2017:i:1:d:10.1007_s10660-016-9242-7
    DOI: 10.1007/s10660-016-9242-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-016-9242-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-016-9242-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Detmar Straub & Moez Limayem & Elena Karahanna-Evaristo, 1995. "Measuring System Usage: Implications for IS Theory Testing," Management Science, INFORMS, vol. 41(8), pages 1328-1342, August.
    2. David Godes & Dina Mayzlin & Yubo Chen & Sanjiv Das & Chrysanthos Dellarocas & Bruce Pfeiffer & Barak Libai & Subrata Sen & Mengze Shi & Peeter Verlegh, 2005. "The Firm's Management of Social Interactions," Marketing Letters, Springer, vol. 16(3), pages 415-428, December.
    3. Connie L. McNeely & Jong-on Hahm, 2014. "The Big (Data) Bang: Policy, Prospects, and Challenges," Review of Policy Research, Policy Studies Organization, vol. 31(4), pages 304-310, July.
    4. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatao Wang & Lihui Ding & Hongxin Yu & Yuanjun Zhao, 2020. "Big data analytics on enterprise credit risk evaluation of e-Business platform," Information Systems and e-Business Management, Springer, vol. 18(3), pages 311-350, September.
    2. Jianshan Sun & Rongrong Ying & Yuanchun Jiang & Jianmin He & Zhengping Ding, 2020. "Leveraging friend and group information to improve social recommender system," Electronic Commerce Research, Springer, vol. 20(1), pages 147-172, March.
    3. Satish Kumar & Weng Marc Lim & Nitesh Pandey & J. Christopher Westland, 2021. "20 years of Electronic Commerce Research," Electronic Commerce Research, Springer, vol. 21(1), pages 1-40, March.
    4. Narisa Zhao & Hui Li, 2020. "How can social commerce be boosted? The impact of consumer behaviors on the information dissemination mechanism in a social commerce network," Electronic Commerce Research, Springer, vol. 20(4), pages 833-856, December.
    5. Fatao Wang & Lihui Ding & Hongxin Yu & Yuanjun Zhao, 0. "Big data analytics on enterprise credit risk evaluation of e-Business platform," Information Systems and e-Business Management, Springer, vol. 0, pages 1-40.
    6. Korayim, Diana & Chotia, Varun & Jain, Girish & Hassan, Sharfa & Paolone, Francesco, 2024. "How big data analytics can create competitive advantage in high-stake decision forecasting? The mediating role of organizational innovation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pauwels, Koen & Aksehirli, Zeynep & Lackman, Andrew, 2016. "Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 639-655.
    2. Antioco, Michael & Coussement, Kristof, 2018. "Misreading of consumer dissatisfaction in online product reviews: Writing style as a cause for bias," International Journal of Information Management, Elsevier, vol. 38(1), pages 301-310.
    3. Thaís L. D. Souza & Marislei Nishijima & Ana C. P. Fava, 2019. "Do consumer and expert reviews affect the length of time a film is kept on screens in the USA?," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 43(1), pages 145-171, March.
    4. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    5. Peters, Kay & Chen, Yubo & Kaplan, Andreas M. & Ognibeni, Björn & Pauwels, Koen, 2013. "Social Media Metrics — A Framework and Guidelines for Managing Social Media," Journal of Interactive Marketing, Elsevier, vol. 27(4), pages 281-298.
    6. Garrett P. Sonnier & Leigh McAlister & Oliver J. Rutz, 2011. "A Dynamic Model of the Effect of Online Communications on Firm Sales," Marketing Science, INFORMS, vol. 30(4), pages 702-716, July.
    7. Kick, Markus, 2015. "Social Media Research: A Narrative Review," EconStor Preprints 182506, ZBW - Leibniz Information Centre for Economics.
    8. Gensler, Sonja & Völckner, Franziska & Liu-Thompkins, Yuping & Wiertz, Caroline, 2013. "Managing Brands in the Social Media Environment," Journal of Interactive Marketing, Elsevier, vol. 27(4), pages 242-256.
    9. Amy Pei & Dina Mayzlin, 2022. "Influencing Social Media Influencers Through Affiliation," Marketing Science, INFORMS, vol. 41(3), pages 593-615, May.
    10. Hyun S. Shin & Dominique M. Hanssens & Kyoo il Kim, 2016. "The role of online buzz for leader versus challenger brands: the case of the MP3 player market," Electronic Commerce Research, Springer, vol. 16(4), pages 503-528, December.
    11. Mariani, Marcello M. & Fosso Wamba, Samuel, 2020. "Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies," Journal of Business Research, Elsevier, vol. 121(C), pages 338-352.
    12. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    13. Henry M. H. Chan & Vincent W. S. Cho, 2022. "An Empirical Study: The Impact of Collaborative Communications on New Product Creativity That Contributes to New Product Performance," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    14. Shijie Lu & Xin (Shane) Wang & Neil Bendle, 2020. "Does Piracy Create Online Word of Mouth? An Empirical Analysis in the Movie Industry," Management Science, INFORMS, vol. 66(5), pages 2140-2162, May.
    15. Joe Cox & Daniel Kaimann, 2013. "The Signaling Effect of Critics - Evidence from a Market for Experience Goods," Working Papers CIE 68, Paderborn University, CIE Center for International Economics.
    16. Sarv Devaraj & Robert F. Easley & J. Michael Crant, 2008. "Research Note ---How Does Personality Matter? Relating the Five-Factor Model to Technology Acceptance and Use," Information Systems Research, INFORMS, vol. 19(1), pages 93-105, March.
    17. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    18. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    19. Kunpeng Zhang & Wendy Moe, 2021. "Measuring Brand Favorability Using Large-Scale Social Media Data," Information Systems Research, INFORMS, vol. 32(4), pages 1128-1139, December.
    20. Hoon S. Choi & Darrell Carpenter & Myung S. Ko, 2022. "Risk Taking Behaviors Using Public Wi-Fi™," Information Systems Frontiers, Springer, vol. 24(3), pages 965-982, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:17:y:2017:i:1:d:10.1007_s10660-016-9242-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.