IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v1y2011i3p419-439.html
   My bibliography  Save this article

Information, variance and cooperation: minimal models

Author

Listed:
  • Mike Mesterton-Gibbons
  • Tom Sherratt

Abstract

No abstract is available for this item.

Suggested Citation

  • Mike Mesterton-Gibbons & Tom Sherratt, 2011. "Information, variance and cooperation: minimal models," Dynamic Games and Applications, Springer, vol. 1(3), pages 419-439, September.
  • Handle: RePEc:spr:dyngam:v:1:y:2011:i:3:p:419-439
    DOI: 10.1007/s13235-011-0017-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s13235-011-0017-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s13235-011-0017-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Renison & Dee Boersma & Mónica B. Martella, 2002. "Winning and losing: causes for variability in outcome of fights in male Magellanic penguins (Spheniscus magellanicus)," Behavioral Ecology, International Society for Behavioral Ecology, vol. 13(4), pages 462-466, July.
    2. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    3. Arnon Lotem & Michael A. Fishman & Lewi Stone, 1999. "Evolution of cooperation between individuals," Nature, Nature, vol. 400(6741), pages 226-227, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Tao & Jing-Jing Xu & Cong Li & Ross Cressman, 2014. "Dominance Hierarchies Induce a Population’s Full Cooperation," Dynamic Games and Applications, Springer, vol. 4(4), pages 432-447, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isamu Okada, 2020. "A Review of Theoretical Studies on Indirect Reciprocity," Games, MDPI, vol. 11(3), pages 1-17, July.
    2. Chengzhang Ma & Wei Cao & Wangheng Liu & Rong Gui & Ya Jia, 2013. "Direct Sum Matrix Game with Prisoner's Dilemma and Snowdrift Game," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-7, December.
    3. Cao, Lixuan & Wu, Bin, 2021. "Eco-evolutionary dynamics with payoff-dependent environmental feedback," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Sergio Currarini & Carmen Marchiori & Alessandro Tavoni, 2016. "Network Economics and the Environment: Insights and Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(1), pages 159-189, September.
    5. Takahara, Akihiro & Sakiyama, Tomoko, 2023. "Twisted strategy may enhance the evolution of cooperation in spatial prisoner’s dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    6. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    7. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    8. Sahoo, Debgopal & Samanta, Guruprasad, 2023. "Modeling cooperative evolution in prey species using the snowdrift game with evolutionary impact on prey–predator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    10. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    11. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    12. Suzuki, Shinsuke & Akiyama, Eizo, 2008. "Evolutionary stability of first-order-information indirect reciprocity in sizable groups," Theoretical Population Biology, Elsevier, vol. 73(3), pages 426-436.
    13. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    14. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    15. Hopp, Daniel & Süß, Karolin, 2024. "How altruistic is indirect reciprocity? — Evidence from gift-exchange games in the lab," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 108(C).
    16. Su, Ran & Fang, Zhi-Ming & Hao, Qing-Yi & Sheng, Chun & Fu, Yuan-Jiao, 2024. "The evolution of cooperation affected by unidirectional acceptability mechanism on interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    17. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    18. Wang, Lei & Wang, Juan & Guo, Baohong & Ding, Shuai & Li, Yukun & Xia, Chengyi, 2014. "Effects of benefit-inspired network coevolution on spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 9-16.
    19. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:1:y:2011:i:3:p:419-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.