IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v184y2024ics0960077924005824.html
   My bibliography  Save this article

The evolution of cooperation affected by unidirectional acceptability mechanism on interdependent networks

Author

Listed:
  • Su, Ran
  • Fang, Zhi-Ming
  • Hao, Qing-Yi
  • Sheng, Chun
  • Fu, Yuan-Jiao

Abstract

The asymmetric behavior of individuals plays a necessary role in the rapid development of human society. Typically, behaviors and acceptability of influential individuals exert influence on the strategy choices of others, but the influence flows mainly in one direction, which shows asymmetric emotions in the cooperative process. Based on this fact, this paper proposes a new prisoner’s dilemma game model involving unidirectional acceptability on interdependent networks. Individuals with higher social influence are segregated spatially in upper network layers, while others with lower influence are located in lower network layers. And two parameters are introduced to the calculation of an individual’s fitness in the model. Simulation results show that individuals who pay more attention to the average acceptability of individuals in the upper network layer promote cooperative behavior in the upper network layer in case of high temptation under unidirectional acceptability mechanisms. Moreover, the high coupling strength between interdependent networks promotes cooperative behavior in the system. In summary, these results may offer insights to underscore the pivotal role played by asymmetric emotion in promoting cooperation.

Suggested Citation

  • Su, Ran & Fang, Zhi-Ming & Hao, Qing-Yi & Sheng, Chun & Fu, Yuan-Jiao, 2024. "The evolution of cooperation affected by unidirectional acceptability mechanism on interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005824
    DOI: 10.1016/j.chaos.2024.115030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924005824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szolnoki, Attila & Chen, Xiaojie, 2022. "Tactical cooperation of defectors in a multi-stage public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Liu, Jinzhuo & Meng, Haoran & Wang, Wei & Xie, Zhongwen & Yu, Qian, 2019. "Evolution of cooperation on independent networks: The influence of asymmetric information sharing updating mechanism," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 234-241.
    3. Vasco Cortez & Pablo Medina & Eric Goles & Roberto Zarama & Sergio Rica, 2015. "Attractors, statistics and fluctuations of the dynamics of the Schelling’s model for social segregation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(1), pages 1-12, January.
    4. Guy Katriel, 2015. "The Immediate Exchange model: an analytical investigation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(1), pages 1-6, January.
    5. Zhang, Gui-Qing & Sun, Qi-Bo & Wang, Lin, 2013. "Noise-induced enhancement of network reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 31-35.
    6. Liu, Yifan & Geng, Yini & Du, Chunpeng & Hu, Kaipeng & Shen, Chen & Pansini, Riccardo & Shi, Lei, 2021. "The interface of unidirectional rewards: Enhanced cooperation within interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    7. David G. Rand & Joshua D. Greene & Martin A. Nowak, 2012. "Spontaneous giving and calculated greed," Nature, Nature, vol. 489(7416), pages 427-430, September.
    8. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    9. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    10. Yuanxin Ye & Yiran Xie & Bo Yang, 2022. "Spatial multi-games under myopic update rule," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-8, March.
    11. Guo, Tian & Du, Chunpeng & Shi, Lei, 2024. "Evolution of cooperation on interdependent networks: The impact of asymmetric punishment," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    12. Wang, Jianwei & Wang, Rong & Yu, Fengyuan & Wang, Ziwei & Li, Qiaochu, 2020. "Learning continuous and consistent strategy promotes cooperation in prisoner’s dilemma game with mixed strategy," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    13. Zhang, Jun & Hu, Bin & Huang, Yi Jie & Deng, Zheng Hong & Wu, Tao, 2020. "The evolution of cooperation affected by aspiration-driven updating rule in multi-games with voluntary participation," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Li, Shulan & Hong, Lijun & Geng, Yini & Shen, Chen, 2020. "Popularity-driven fitness calculation promotes cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    15. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    16. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Wang, Rong, 2021. "Effects of emotion on the evolution of cooperation in a spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    17. Liu, Yongkui & Li, Zhi & Chen, Xiaojie & Wang, Long, 2010. "Memory-based prisoner’s dilemma on square lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2390-2396.
    18. Henrik H. De Fine Licht & Jacobus J. Boomsma & Anders Tunlid, 2014. "Symbiotic adaptations in the fungal cultivar of leaf-cutting ants," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zha, Jiajing & Li, Cong & Fan, Suohai, 2022. "The effect of stability-based strategy updating on cooperation in evolutionary social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    2. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    3. Gao, Liyan & Pan, Qiuhui & He, Mingfeng, 2023. "Impact of peer pressure on the evolution of cooperation in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Chen, Qin & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of quasi-cooperative strategy on social dilemma evolution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Huang, Chaochao & Wang, Chaoqian, 2024. "Memory-based involution dilemma on square lattices," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Wang, Rong, 2021. "Effects of emotion on the evolution of cooperation in a spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    7. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Restoring spatial cooperation with myopic agents in a three-strategy social dilemma," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    8. Zhang, Jing & Li, Zhao & Zhang, Jiqiang & Ma, Lin & Zheng, Guozhong & Chen, Li, 2023. "Emergence of oscillatory cooperation in a population with incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    9. Deng, Yunsheng & Zhang, Jihui, 2021. "The role of the preferred neighbor with the expected payoff on cooperation in spatial public goods game under optimal strategy selection mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    10. Liao, Hui-Min & Hao, Qing-Yi & Qian, Jia-Li & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "Cooperative evolution under the joint influence of local popularity and global popularity," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    11. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    12. Lu, Wen & Liang, Shu, 2023. "Direct emotional interaction in prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    13. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Dai, Wenhui, 2024. "Successful initial positioning of non-cooperative individuals in cooperative populations effectively hinders cooperation prosperity," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    14. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Liu, Dan & Gao, Li, 2018. "Multi-games on interdependent networks and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 83-90.
    15. Allen, James M. & Hoyle, Rebecca B., 2017. "Asynchronous updates can promote the evolution of cooperation on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 607-619.
    16. Zhu, Jiabao & Liu, Xingwen, 2021. "The number of strategy changes can be used to promote cooperation in spatial snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    17. Zhu, Xiaochen, 2023. "The dynamic edge environment under interactive diversity is a double-edged sword," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    18. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    19. Pi, Bin & Li, Yuhan & Feng, Minyu, 2022. "An evolutionary game with conformists and profiteers regarding the memory mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    20. Wang, Tao & Chen, Zhigang & Li, Kenli & Deng, Xiaoheng & Li, Deng, 2014. "Memory does not necessarily promote cooperation in dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 218-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.