IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v11y2021i3d10.1007_s13235-020-00365-w.html
   My bibliography  Save this article

Structural Heterogeneity and Evolutionary Dynamics on Complex Networks

Author

Listed:
  • Jinhua Zhao

    (Wuhan University)

  • Xianjia Wang

    (Wuhan University
    Wuhan University)

  • Cuiling Gu

    (Wuhan University)

  • Ying Qin

    (Wuhan University)

Abstract

The study of evolutionary games on networks has revealed the impact of population structure on evolutionary dynamics. Unlike the case in well-mixed population where defection is favored by natural selection, certain types of networks have shown to favor cooperation. However, most previous research work has been focusing on frequency-based analysis, and emphasized on the update strategy adopted by each player, and thus generally considered the group of players with the same strategy as a whole. While it is powerful in deriving analytic results using this approach, the heterogeneity of players within such groups is effectively overlooked. In this paper, we attempt to emphasize more on the heterogeneity of players that comes from the network structure in evolutionary dynamics. Particularly, the prestige of a player is represented by its centrality, and it is reflected in an adapted payoff function. We provide several viable centrality measures that can be calculated using the adjacency matrix of the network. The relation between different centrality measures of the invader and the fixation of cooperation is analyzed via computational simulations. Results show that in the proposed model, compared to other three centrality measures, invaders with maximum betweenness centrality have significant advantage in terms of the fixation probability of cooperation, in both scale-free and small-world networks.

Suggested Citation

  • Jinhua Zhao & Xianjia Wang & Cuiling Gu & Ying Qin, 2021. "Structural Heterogeneity and Evolutionary Dynamics on Complex Networks," Dynamic Games and Applications, Springer, vol. 11(3), pages 612-629, September.
  • Handle: RePEc:spr:dyngam:v:11:y:2021:i:3:d:10.1007_s13235-020-00365-w
    DOI: 10.1007/s13235-020-00365-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-020-00365-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-020-00365-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Allen & Gabor Lippner & Yu-Ting Chen & Babak Fotouhi & Naghmeh Momeni & Shing-Tung Yau & Martin A. Nowak, 2017. "Evolutionary dynamics on any population structure," Nature, Nature, vol. 544(7649), pages 227-230, April.
    2. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    3. Wilhite, Allen, 2014. "Network structure, games, and agent dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 225-238.
    4. repec:nas:journl:v:115:y:2018:p:9968-9973 is not listed on IDEAS
    5. Peter D. Taylor & Troy Day & Geoff Wild, 2007. "Evolution of cooperation in a finite homogeneous graph," Nature, Nature, vol. 447(7143), pages 469-472, May.
    6. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    7. Giulio Cimini, 2017. "Evolutionary Network Games: Equilibria from Imitation and Best Response Dynamics," Complexity, Hindawi, vol. 2017, pages 1-14, August.
    8. Cong Li & Boyu Zhang & Ross Cressman & Yi Tao, 2013. "Evolution of Cooperation in a Heterogeneous Graph: Fixation Probabilities under Weak Selection," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra F. Lütz & Marco A. Amaral & Lucas Wardil, 2021. "Acculturation and the evolution of cooperation in spatial public goods games," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-11, November.
    2. Liming Zhang & Ming Cai & Yingxin Zhang & Shuai Wang & Yao Xiao, 2024. "Two-layer network evolutionary game model applied to complex systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(11), pages 1-17, November.
    3. Zhang, Wei & Brandes, Ulrik, 2023. "Is cooperation sustained under increased mixing in evolutionary public goods games on networks?," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    4. Flores, Lucas S. & Amaral, Marco A. & Vainstein, Mendeli H. & Fernandes, Heitor C.M., 2022. "Cooperation in regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    2. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    3. Christopher Graser & Takako Fujiwara-Greve & Julian García & Matthijs van Veelen, 2024. "Repeated games with partner choice," Tinbergen Institute Discussion Papers 24-038/I, Tinbergen Institute.
    4. Mark Broom & Igor V. Erovenko & Jan Rychtář, 2021. "Modelling Evolution in Structured Populations Involving Multiplayer Interactions," Dynamic Games and Applications, Springer, vol. 11(2), pages 270-293, June.
    5. Liu, Xuesong & Pan, Qiuhui & He, Mingfeng & Liu, Aizhi, 2019. "Promotion of cooperation in evolutionary game dynamics under asymmetric information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 258-266.
    6. Sarkar, Bijan, 2018. "Moran-evolution of cooperation: From well-mixed to heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 319-334.
    7. Hendrik Richter, 2020. "Evolution of Cooperation for Multiple Mutant Configurations on All Regular Graphs with N ≤ 14 Players," Games, MDPI, vol. 11(1), pages 1-18, February.
    8. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    9. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    10. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Sakiyama, Tomoko, 2021. "A power law network in an evolutionary hawk–dove game," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    13. Wang, Chaoqian & Szolnoki, Attila, 2023. "Inertia in spatial public goods games under weak selection," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    14. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    15. Kroumi, Dhaker & Lessard, Sabin, 2015. "Evolution of cooperation in a multidimensional phenotype space," Theoretical Population Biology, Elsevier, vol. 102(C), pages 60-75.
    16. Charles G Nathanson & Corina E Tarnita & Martin A Nowak, 2009. "Calculating Evolutionary Dynamics in Structured Populations," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-7, December.
    17. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Alternating rotation of coordinated and anti-coordinated action due to environmental feedback and noise," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    18. Dhaker Kroumi, 2021. "Aspiration Can Promote Cooperation in Well-Mixed Populations As in Regular Graphs," Dynamic Games and Applications, Springer, vol. 11(2), pages 390-417, June.
    19. Josef Tkadlec & Andreas Pavlogiannis & Krishnendu Chatterjee & Martin A Nowak, 2020. "Limits on amplifiers of natural selection under death-Birth updating," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-13, January.
    20. Wang, Chaoqian, 2024. "Evolution of trust in structured populations," Applied Mathematics and Computation, Elsevier, vol. 471(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:11:y:2021:i:3:d:10.1007_s13235-020-00365-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.