IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003567.html
   My bibliography  Save this article

Evolutionary Game Dynamics in Populations with Heterogenous Structures

Author

Listed:
  • Wes Maciejewski
  • Feng Fu
  • Christoph Hauert

Abstract

Evolutionary graph theory is a well established framework for modelling the evolution of social behaviours in structured populations. An emerging consensus in this field is that graphs that exhibit heterogeneity in the number of connections between individuals are more conducive to the spread of cooperative behaviours. In this article we show that such a conclusion largely depends on the individual-level interactions that take place. In particular, averaging payoffs garnered through game interactions rather than accumulating the payoffs can altogether remove the cooperative advantage of heterogeneous graphs while such a difference does not affect the outcome on homogeneous structures. In addition, the rate at which game interactions occur can alter the evolutionary outcome. Less interactions allow heterogeneous graphs to support more cooperation than homogeneous graphs, while higher rates of interactions make homogeneous and heterogeneous graphs virtually indistinguishable in their ability to support cooperation. Most importantly, we show that common measures of evolutionary advantage used in homogeneous populations, such as a comparison of the fixation probability of a rare mutant to that of the resident type, are no longer valid in heterogeneous populations. Heterogeneity causes a bias in where mutations occur in the population which affects the mutant's fixation probability. We derive the appropriate measures for heterogeneous populations that account for this bias.Author Summary: Understanding the evolution of cooperation is a persistent challenge to evolutionary theorists. A contemporary take on this subject is to model populations with interactions structured as close as possible to actual social networks. These networks are heterogeneous in the number and type of contact each member has. Our paper demonstrates that the fate of cooperation in such heterogeneous populations critically depends on the rate at which interactions occur and how interactions translate into the fitnesses of the strategies. We also develop theory that allows for an evolutionary analysis in heterogeneous populations. This includes deriving appropriate criteria for evolutionary advantage.

Suggested Citation

  • Wes Maciejewski & Feng Fu & Christoph Hauert, 2014. "Evolutionary Game Dynamics in Populations with Heterogenous Structures," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
  • Handle: RePEc:plo:pcbi00:1003567
    DOI: 10.1371/journal.pcbi.1003567
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003567
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003567&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Szolnoki, Attila & Perc, Matjaž & Danku, Zsuzsa, 2008. "Towards effective payoffs in the prisoner’s dilemma game on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2075-2082.
    2. M. E. J. Newman & D. J. Watts, 1999. "Scaling and Percolation in the Small-World Network Model," Working Papers 99-05-034, Santa Fe Institute.
    3. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    4. Marco Tomassini & Enea Pestelacci & Leslie Luthi, 2007. "Social Dilemmas And Cooperation In Complex Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1173-1185.
    5. Jorge M Pacheco & Flávio L Pinheiro & Francisco C Santos, 2009. "Population Structure Induces a Symmetry Breaking Favoring the Emergence of Cooperation," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-7, December.
    6. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    7. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    8. Peter D. Taylor & Troy Day & Geoff Wild, 2007. "Evolution of cooperation in a finite homogeneous graph," Nature, Nature, vol. 447(7143), pages 469-472, May.
    9. Alberto Antonioni & Marco Tomassini, 2012. "Cooperation On Social Networks And Its Robustness," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(supp0), pages 1-19.
    10. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    11. Francisco C Santos & Jorge M Pacheco & Tom Lenaerts, 2006. "Cooperation Prevails When Individuals Adjust Their Social Ties," PLOS Computational Biology, Public Library of Science, vol. 2(10), pages 1-8, October.
    12. C. Hadjichrysanthou & M. Broom & J. Rychtář, 2011. "Evolutionary Games on Star Graphs Under Various Updating Rules," Dynamic Games and Applications, Springer, vol. 1(3), pages 386-407, September.
    13. Cong Li & Boyu Zhang & Ross Cressman & Yi Tao, 2013. "Evolution of Cooperation in a Heterogeneous Graph: Fixation Probabilities under Weak Selection," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-6, June.
    14. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    15. Joshua Zukewich & Venu Kurella & Michael Doebeli & Christoph Hauert, 2013. "Consolidating Birth-Death and Death-Birth Processes in Structured Populations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Allen & Christine Sample & Yulia Dementieva & Ruben C Medeiros & Christopher Paoletti & Martin A Nowak, 2015. "The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-32, February.
    2. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Bin Wu & Lei Zhou, 2018. "Individualised aspiration dynamics: Calculation by proofs," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-15, September.
    4. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    5. Quan, Ji & Chen, Xinyue & Wang, Xianjia, 2024. "Repeated prisoner's dilemma games in multi-player structured populations with crosstalk," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    6. Suzan Farhang-Sardroodi & Amir H Darooneh & Moladad Nikbakht & Natalia L Komarova & Mohammad Kohandel, 2017. "The effect of spatial randomness on the average fixation time of mutants," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-22, November.
    7. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    8. Laura Hindersin & Arne Traulsen, 2015. "Most Undirected Random Graphs Are Amplifiers of Selection for Birth-Death Dynamics, but Suppressors of Selection for Death-Birth Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-14, November.
    9. Alex McAvoy & Christoph Hauert, 2015. "Asymmetric Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    10. Boyu Zhang & Cong Li & Yi Tao, 2016. "Evolutionary Stability and the Evolution of Cooperation on Heterogeneous Graphs," Dynamic Games and Applications, Springer, vol. 6(4), pages 567-579, December.
    11. Sarkar, Bijan, 2018. "Moran-evolution of cooperation: From well-mixed to heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 319-334.
    12. Sakiyama, Tomoko, 2021. "A power law network in an evolutionary hawk–dove game," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Li, Wen-Jing & Jiang, Luo-Luo & Chen, Zhi & Perc, Matjaž & Slavinec, Mitja, 2020. "Optimization of mobile individuals promotes cooperation in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    14. Li, Xiaopeng & Hao, Gang & Zhang, Zhipeng & Xia, Chengyi, 2021. "Evolution of cooperation in heterogeneously stochastic interactions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Yao Meng & Sean P. Cornelius & Yang-Yu Liu & Aming Li, 2024. "Dynamics of collective cooperation under personalised strategy updates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Mark Broom & Jan Rychtář, 2018. "Ideal Cost-Free Distributions in Structured Populations for General Payoff Functions," Dynamic Games and Applications, Springer, vol. 8(1), pages 79-92, March.
    17. Sanz Nogales, Jose M. & Zazo, S., 2020. "Replicator based on imitation for finite and arbitrary networked communities," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    18. Deng, Zhenghong & Huang, Yijie & Gu, Zhiyang & Deng, Zhilong & Xu, Jiwei, 2018. "The evolution of cooperation in spatial multigame with voluntary participation," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 41-46.
    19. Huang, Keke & Chen, Xiaofang & Yu, Zhaofei & Yang, Chunhua & Gui, Weihua, 2018. "Heterogeneous cooperative belief for social dilemma in multi-agent system," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 572-579.
    20. Wang, Xianjia & Chen, Wenman, 2020. "Evolutionary dynamics in spatial threshold public goods game with the asymmetric return rate mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    21. Chu, Chen & Liu, Jinzhuo & Shen, Chen & Jin, Jiahua & Tang, Yunxuan & Shi, Lei, 2017. "Coevolution of game strategy and link weight promotes cooperation in structured population," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 28-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarkar, Bijan, 2018. "Moran-evolution of cooperation: From well-mixed to heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 319-334.
    2. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    3. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    4. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    5. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    6. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    7. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    8. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    9. Yanlong Zhang, 2015. "Partially and Wholly Overlapping Networks: The Evolutionary Dynamics of Social Dilemmas on Social Networks," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 1-14, June.
    10. Jorge M Pacheco & Flávio L Pinheiro & Francisco C Santos, 2009. "Population Structure Induces a Symmetry Breaking Favoring the Emergence of Cooperation," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-7, December.
    11. Alex McAvoy & Christoph Hauert, 2015. "Asymmetric Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    12. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    13. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    14. Xiang Wei & Peng Xu & Shuiting Du & Guanghui Yan & Huayan Pei, 2021. "Reputational preference-based payoff punishment promotes cooperation in spatial social dilemmas," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-7, October.
    15. Wang, Jianwei & Xu, Wenshu & Yu, Fengyuan & He, Jialu & Chen, Wei & Dai, Wenhui, 2024. "Evolution of cooperation under corrupt institutions," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    16. Hong, Lijun & Geng, Yini & Du, Chunpeng & Shen, Chen & Shi, Lei, 2021. "Average payoff-driven or imitation? A new evidence from evolutionary game theory in finite populations," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    17. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    18. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    19. Kroumi, Dhaker & Lessard, Sabin, 2015. "Evolution of cooperation in a multidimensional phenotype space," Theoretical Population Biology, Elsevier, vol. 102(C), pages 60-75.
    20. Charles G Nathanson & Corina E Tarnita & Martin A Nowak, 2009. "Calculating Evolutionary Dynamics in Structured Populations," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.