IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v10y2020i2d10.1007_s13235-019-00320-4.html
   My bibliography  Save this article

Solution to a Zero-Sum Differential Game with Fractional Dynamics via Approximations

Author

Listed:
  • Mikhail Gomoyunov

    (Ural Branch of the Russian Academy of Sciences
    Ural Federal University)

Abstract

The paper deals with a zero-sum differential game in which the dynamical system is described by a fractional differential equation with the Caputo derivative of an order $$\alpha \in (0, 1).$$α∈(0,1). The goal of the first (second) player is to minimize (maximize) a given quality index. The main contribution of the paper is the proof of the fact that this differential game has the value, i.e., the lower and upper game values coincide. The proof is based on the appropriate approximation of the game by a zero-sum differential game in which the dynamical system is described by a first-order functional differential equation of a retarded type. It is shown that the values of the approximating differential games have a limit, and this limit is the value of the original game. Moreover, the optimal players’ feedback control procedures are proposed that use the optimally controlled approximating system as a guide. An example is considered, and the results of computer simulations are presented.

Suggested Citation

  • Mikhail Gomoyunov, 2020. "Solution to a Zero-Sum Differential Game with Fractional Dynamics via Approximations," Dynamic Games and Applications, Springer, vol. 10(2), pages 417-443, June.
  • Handle: RePEc:spr:dyngam:v:10:y:2020:i:2:d:10.1007_s13235-019-00320-4
    DOI: 10.1007/s13235-019-00320-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-019-00320-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-019-00320-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/5561 is not listed on IDEAS
    2. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    3. Jun Shen & James Lam, 2014. "State feedback control of commensurate fractional-order systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(3), pages 363-372.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikhail I. Gomoyunov, 2021. "Differential Games for Fractional-Order Systems: Hamilton–Jacobi–Bellman–Isaacs Equation and Optimal Feedback Strategies," Mathematics, MDPI, vol. 9(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong, 2019. "Chaotic analysis and adaptive synchronization for a class of fractional order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 33-42.
    2. Peng, Qiu & Jian, Jigui, 2021. "Estimating the ultimate bounds and synchronization of fractional-order plasma chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Lu, Jiyong & Guo, Yanping & Ji, Yude & Fan, Shuangshuang, 2020. "Finite-time synchronization for different dimensional fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    5. Jian, Jigui & Wu, Kai & Wang, Baoxian, 2020. "Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Li, Qinnan & Li, Ruihong & Huang, Dongmei, 2023. "Dynamic analysis of a new 4D fractional-order financial system and its finite-time fractional integral sliding mode control based on RBF neural network," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Zhang, Xuefeng & Chen, Shunan & Zhang, Jin-Xi, 2022. "Adaptive sliding mode consensus control based on neural network for singular fractional order multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    8. Qijia Yao & Hadi Jahanshahi & Larissa M. Batrancea & Naif D. Alotaibi & Mircea-Iosif Rus, 2022. "Fixed-Time Output-Constrained Synchronization of Unknown Chaotic Financial Systems Using Neural Learning," Mathematics, MDPI, vol. 10(19), pages 1-14, October.
    9. He, Ke & Shi, Jianping & Fang, Hui, 2024. "Bifurcation and chaos analysis of a fractional-order delay financial risk system using dynamic system approach and persistent homology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 253-274.
    10. Song Xu & Hui Lv & Heng Liu & Aijing Liu, 2019. "Robust Control of Disturbed Fractional-Order Economical Chaotic Systems with Uncertain Parameters," Complexity, Hindawi, vol. 2019, pages 1-13, October.
    11. Lin, Xiaoran & Wang, Yachao & Wang, Jifang & Zeng, Wenxian, 2022. "Dynamic analysis and adaptive modified projective synchronization for systems with Atangana-Baleanu-Caputo derivative: A financial model with nonconstant demand elasticity," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    12. Peng, Yuexi & Sun, Kehui & Peng, Dong & Ai, Wei, 2019. "Dynamics of a higher dimensional fractional-order chaotic map," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 96-107.
    13. Roxana Motorga & Vlad Mureșan & Mihaela-Ligia Ungureșan & Mihail Abrudean & Honoriu Vălean & Iulia Clitan, 2022. "Artificial Intelligence in Fractional-Order Systems Approximation with High Performances: Application in Modelling of an Isotopic Separation Process," Mathematics, MDPI, vol. 10(9), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:10:y:2020:i:2:d:10.1007_s13235-019-00320-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.