IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v223y2024icp253-274.html
   My bibliography  Save this article

Bifurcation and chaos analysis of a fractional-order delay financial risk system using dynamic system approach and persistent homology

Author

Listed:
  • He, Ke
  • Shi, Jianping
  • Fang, Hui

Abstract

A comprehensive theoretical and numerical analysis of the dynamical features of a fractional-order delay financial risk system(FDRS) is presented in this paper. Applying the linearization method and Laplace transform, the critical value of delay when Hopf bifurcation first appears near the equilibrium is firstly derived in an explicit formula. Comparison simulations clarify the reasonableness of fractional-order derivative and delay in describing the financial risk management processes. Then we employ persistent homology and six topological indicators to reveal the geometric and topological structures of FDRS in delay interval. Persistence barcodes, diagrams, and landscapes are utilized for visualizing the simplicial complex’s information. The approximate values of delay when FDRS undergoes different periodic oscillations and even chaos are determined. The existence of periodic windows within the chaotic interval is correctly decided. The results of this paper contribute to capturing intricate information of underlying financial activities and detecting the critical transition of FDRS, which has promising and reliable implications for a deeper comprehension of complex behaviors in financial markets.

Suggested Citation

  • He, Ke & Shi, Jianping & Fang, Hui, 2024. "Bifurcation and chaos analysis of a fractional-order delay financial risk system using dynamic system approach and persistent homology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 253-274.
  • Handle: RePEc:eee:matcom:v:223:y:2024:i:c:p:253-274
    DOI: 10.1016/j.matcom.2024.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    2. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    4. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    5. Li, Peiluan & Gao, Rong & Xu, Changjin & Li, Ying & Akgül, Ali & Baleanu, Dumitru, 2023. "Dynamics exploration for a fractional-order delayed zooplankton–phytoplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Economic interpretation of fractional derivatives," Papers 1712.09575, arXiv.org.
    7. Xuebing Zhang & Honglan Zhu, 2019. "Hopf Bifurcation and Chaos of a Delayed Finance System," Complexity, Hindawi, vol. 2019, pages 1-18, January.
    8. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    9. Chian, Abraham C.-L. & Rempel, Erico L. & Rogers, Colin, 2006. "Complex economic dynamics: Chaotic saddle, crisis and intermittency," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1194-1218.
    10. Qi, Guoyuan & Chen, Guanrong & Du, Shengzhi & Chen, Zengqiang & Yuan, Zhuzhi, 2005. "Analysis of a new chaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 295-308.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Jianping & He, Ke & Fang, Hui, 2022. "Chaos, Hopf bifurcation and control of a fractional-order delay financial system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 348-364.
    2. Çalış, Yasemin & Demirci, Ali & Özemir, Cihangir, 2022. "Hopf bifurcation of a financial dynamical system with delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 343-361.
    3. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    4. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Vasily E. Tarasov, 2019. "Rules for Fractional-Dynamic Generalizations: Difficulties of Constructing Fractional Dynamic Models," Mathematics, MDPI, vol. 7(6), pages 1-50, June.
    6. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong, 2019. "Chaotic analysis and adaptive synchronization for a class of fractional order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 33-42.
    7. Jajarmi, Amin & Hajipour, Mojtaba & Baleanu, Dumitru, 2017. "New aspects of the adaptive synchronization and hyperchaos suppression of a financial model," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 285-296.
    8. Weiwei Zhang & Jinde Cao & Ahmed Alsaedi & Fuad Eid S. Alsaadi, 2017. "Synchronization of Time Delayed Fractional Order Chaotic Financial System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-5, October.
    9. Wang, Bo & Liu, Jinping & Alassafi, Madini O. & Alsaadi, Fawaz E. & Jahanshahi, Hadi & Bekiros, Stelios, 2022. "Intelligent parameter identification and prediction of variable time fractional derivative and application in a symmetric chaotic financial system," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    10. Song Xu & Hui Lv & Heng Liu & Aijing Liu, 2019. "Robust Control of Disturbed Fractional-Order Economical Chaotic Systems with Uncertain Parameters," Complexity, Hindawi, vol. 2019, pages 1-13, October.
    11. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    12. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    13. Bazán Navarro, Ciro Eduardo & Benazic Tomé, Renato Mario, 2024. "Qualitative behavior in a fractional order IS-LM-AS macroeconomic model with stability analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 425-443.
    14. Muhammad Imran Liaqat & Ali Akgül & Hanaa Abu-Zinadah, 2023. "Analytical Investigation of Some Time-Fractional Black–Scholes Models by the Aboodh Residual Power Series Method," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    15. Inés Tejado & Emiliano Pérez & Duarte Valério, 2020. "Fractional Derivatives for Economic Growth Modelling of the Group of Twenty: Application to Prediction," Mathematics, MDPI, vol. 8(1), pages 1-21, January.
    16. Chen, Wei-Ching, 2008. "Dynamics and control of a financial system with time-delayed feedbacks," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1198-1207.
    17. Son, Woo-Sik & Park, Young-Jai, 2011. "Delayed feedback on the dynamical model of a financial system," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 208-217.
    18. Ren, Jinfu & Liu, Yang & Liu, Jiming, 2023. "Chaotic behavior learning via information tracking," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    19. Wang, Lei & Chen, Yi-Ming, 2020. "Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    20. Liang, Xiyin & Qi, Guoyuan, 2017. "Mechanical analysis of Chen chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 173-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:223:y:2024:i:c:p:253-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.