IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v223y2024icp253-274.html
   My bibliography  Save this article

Bifurcation and chaos analysis of a fractional-order delay financial risk system using dynamic system approach and persistent homology

Author

Listed:
  • He, Ke
  • Shi, Jianping
  • Fang, Hui

Abstract

A comprehensive theoretical and numerical analysis of the dynamical features of a fractional-order delay financial risk system(FDRS) is presented in this paper. Applying the linearization method and Laplace transform, the critical value of delay when Hopf bifurcation first appears near the equilibrium is firstly derived in an explicit formula. Comparison simulations clarify the reasonableness of fractional-order derivative and delay in describing the financial risk management processes. Then we employ persistent homology and six topological indicators to reveal the geometric and topological structures of FDRS in delay interval. Persistence barcodes, diagrams, and landscapes are utilized for visualizing the simplicial complex’s information. The approximate values of delay when FDRS undergoes different periodic oscillations and even chaos are determined. The existence of periodic windows within the chaotic interval is correctly decided. The results of this paper contribute to capturing intricate information of underlying financial activities and detecting the critical transition of FDRS, which has promising and reliable implications for a deeper comprehension of complex behaviors in financial markets.

Suggested Citation

  • He, Ke & Shi, Jianping & Fang, Hui, 2024. "Bifurcation and chaos analysis of a fractional-order delay financial risk system using dynamic system approach and persistent homology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 253-274.
  • Handle: RePEc:eee:matcom:v:223:y:2024:i:c:p:253-274
    DOI: 10.1016/j.matcom.2024.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:223:y:2024:i:c:p:253-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.