IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v525y2019icp96-107.html
   My bibliography  Save this article

Dynamics of a higher dimensional fractional-order chaotic map

Author

Listed:
  • Peng, Yuexi
  • Sun, Kehui
  • Peng, Dong
  • Ai, Wei

Abstract

Fractional calculus has been a hot topic in nonlinear science, because it can describe physical phenomena more accurately. In recent years, the theory of fractional difference has become one of the foundations for fractional-order chaotic maps. Based on this concept, a higher dimensional fractional-order chaotic map is investigated. Different from other proposed fractional-order chaotic maps, it has multiple dimensions, and can be set as incommensurate fractional order. The bifurcation diagrams and attractors of this system with changing fractional orders are plotted by numerical simulations, and the maximum Lyapunov exponent (MLE), the permutation entropy complexity, and the probability density distribution are also calculated. Results show it has rich dynamical behaviors. Many of the periodic windows in the integer-order map become chaos when they are in the fractional-order form. And the complexity of the fractional-order form is higher than that of its integer-order counterpart and other nine typical chaotic maps. In addition, the distribution of fractional-order system is also better than that of the integer-order one. These results lay the theoretical foundation for its practical applications and relevant to the study of other fractional-order chaotic maps.

Suggested Citation

  • Peng, Yuexi & Sun, Kehui & Peng, Dong & Ai, Wei, 2019. "Dynamics of a higher dimensional fractional-order chaotic map," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 96-107.
  • Handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:96-107
    DOI: 10.1016/j.physa.2019.03.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119302936
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.03.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    2. Coronel-Escamilla, A. & Gómez-Aguilar, J.F. & Torres, L. & Escobar-Jiménez, R.F. & Valtierra-Rodríguez, M., 2017. "Synchronization of chaotic systems involving fractional operators of Liouville–Caputo type with variable-order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 1-21.
    3. He, Shaobo & Sun, Kehui & Wang, Huihai, 2016. "Multivariate permutation entropy and its application for complexity analysis of chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 812-823.
    4. Yu, Yongguang & Li, Han-Xiong & Wang, Sha & Yu, Junzhi, 2009. "Dynamic analysis of a fractional-order Lorenz chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1181-1189.
    5. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Zhou, Shuang & Wang, Xingyuan, 2021. "Simple estimation method for the largest Lyapunov exponent of continuous fractional-order differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    3. Amina-Aicha Khennaoui & Adel Ouannas & Shaher Momani & Othman Abdullah Almatroud & Mohammed Mossa Al-Sawalha & Salah Mahmoud Boulaaras & Viet-Thanh Pham, 2022. "Special Fractional-Order Map and Its Realization," Mathematics, MDPI, vol. 10(23), pages 1-11, November.
    4. Peng, Yuexi & Liu, Jun & He, Shaobo & Sun, Kehui, 2023. "Discrete fracmemristor-based chaotic map by Grunwald–Letnikov difference and its circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    5. Liu, Xianggang & Ma, Li, 2020. "Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 385(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    2. Deepika, Deepika & Kaur, Sandeep & Narayan, Shiv, 2018. "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 196-203.
    3. Runlong Peng & Cuimei Jiang & Rongwei Guo, 2021. "Partial Anti-Synchronization of the Fractional-Order Chaotic Systems through Dynamic Feedback Control," Mathematics, MDPI, vol. 9(7), pages 1-13, March.
    4. Rongwei Guo & Yaru Zhang & Cuimei Jiang, 2021. "Synchronization of Fractional-Order Chaotic Systems with Model Uncertainty and External Disturbance," Mathematics, MDPI, vol. 9(8), pages 1-12, April.
    5. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    6. Hanshuo Qiu & Xiangzi Zhang & Huaixiao Yue & Jizhao Liu, 2023. "A Novel Eighth-Order Hyperchaotic System and Its Application in Image Encryption," Mathematics, MDPI, vol. 11(19), pages 1-29, September.
    7. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    8. Soliman, Nancy S. & Tolba, Mohammed F. & Said, Lobna A. & Madian, Ahmed H. & Radwan, Ahmed G., 2019. "Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 292-307.
    9. Momani, Shaher & Odibat, Zaid, 2007. "Numerical comparison of methods for solving linear differential equations of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1248-1255.
    10. Wan, Li & Ling, Guang & Guan, Zhi-Hong & Fan, Qingju & Tong, Yu-Han, 2022. "Fractional multiscale phase permutation entropy for quantifying the complexity of nonlinear time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    11. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    12. Li, Zengshan & Chen, Diyi & Ma, Mengmeng & Zhang, Xinguang & Wu, Yonghong, 2017. "Feigenbaum's constants in reverse bifurcation of fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 116-123.
    13. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Silva-Juárez, Alejandro & Tlelo-Cuautle, Esteban & de la Fraga, Luis Gerardo & Li, Rui, 2021. "Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    15. Lin, Tsung-Chih & Lee, Tun-Yuan & Balas, Valentina E., 2011. "Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 791-801.
    16. Pratap, A. & Raja, R. & Cao, J. & Rihan, Fathalla A. & Seadawy, Aly R., 2020. "Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    17. Zhu, Hao & Zhou, Shangbo & Zhang, Jun, 2009. "Chaos and synchronization of the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1595-1603.
    18. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    19. Kamal, F.M. & Elsonbaty, A. & Elsaid, A., 2021. "A novel fractional nonautonomous chaotic circuit model and its application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    20. Naik, Manisha Krishna & Baishya, Chandrali & Veeresha, P., 2023. "A chaos control strategy for the fractional 3D Lotka–Volterra like attractor," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:96-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.