IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v33y2010i2p81-95.html
   My bibliography  Save this article

Adaptive algorithms for maximizing overall stock return

Author

Listed:
  • Charles Lee
  • Kristy Tran

Abstract

No abstract is available for this item.

Suggested Citation

  • Charles Lee & Kristy Tran, 2010. "Adaptive algorithms for maximizing overall stock return," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 33(2), pages 81-95, November.
  • Handle: RePEc:spr:decfin:v:33:y:2010:i:2:p:81-95
    DOI: 10.1007/s10203-009-0096-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10203-009-0096-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10203-009-0096-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    2. R. Brummelhuis & A. Córdoba & M. Quintanilla & L. Seco, 2002. "Principal Component Value at Risk," Mathematical Finance, Wiley Blackwell, vol. 12(1), pages 23-43, January.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    2. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    3. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    4. Galai, Dan & Raviv, Alon & Wiener, Zvi, 2007. "Liquidation triggers and the valuation of equity and debt," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3604-3620, December.
    5. Kostrova, Alisa & Britz, Wolfgang & Djanibekov, Utkur & Finger, Robert, 2016. "Monte-Carlo Simulation and Stochastic Programming in Real Options Valuation: the Case of Perennial Energy Crop Cultivation," Discussion Papers 250253, University of Bonn, Institute for Food and Resource Economics.
    6. Engstrom, Malin & Norden, Lars, 2000. "The early exercise premium in American put option prices," Journal of Multinational Financial Management, Elsevier, vol. 10(3-4), pages 461-479, December.
    7. Zhushun Yuan & Gemai Chen, 2009. "Asymptotic Normality for EMS Option Price Estimator with Continuous or Discontinuous Payoff Functions," Management Science, INFORMS, vol. 55(8), pages 1438-1450, August.
    8. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Jorgensen, Peter Lochte, 2007. "Traffic light options," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3698-3719, December.
    11. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    12. Kenji Hamatani & Masao Fukushima, 2011. "Pricing American options with uncertain volatility through stochastic linear complementarity models," Computational Optimization and Applications, Springer, vol. 50(2), pages 263-286, October.
    13. Capuozzo, Pietro & Panella, Emanuele & Schettini Gherardini, Tancredi & Vvedensky, Dimitri D., 2021. "Path integral Monte Carlo method for option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    14. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.
    15. S. Caserta & J. DanÃÂÃÂelsson & C. G. De Vries, 1998. "Abnormal returns, risk, and options in large data sets," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(3), pages 324-335, November.
    16. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    17. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    18. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    19. Morgan, Horatio M. & Ngwenyama, Ojelanki, 2015. "Real options, learning cost and timing software upgrades: Towards an integrative model for enterprise software upgrade decision analysis," International Journal of Production Economics, Elsevier, vol. 168(C), pages 211-223.
    20. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.

    More about this item

    Keywords

    Adaptive portfolio optimization; Optimal allocation; Proper orthogonal decomposition; 46N10; 46N40; C44; C61;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:33:y:2010:i:2:p:81-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.