Accelerating stochastic sequential quadratic programming for equality constrained optimization using predictive variance reduction
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-023-00483-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nilanjan Chatterjee & Yi-Hau Chen & Paige Maas & Raymond J. Carroll, 2016. "Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-Level Information From External Big Data Sources," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 107-117, March.
- Jianchao Bai & William W. Hager & Hongchao Zhang, 2022. "An inexact accelerated stochastic ADMM for separable convex optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 479-518, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Debashis Ghosh & Michael S. Sabel, 2022. "A Weighted Sample Framework to Incorporate External Calculators for Risk Modeling," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 363-379, December.
- Cao, Yongxiu & Yu, Jichang, 2023. "Adjusting for unmeasured confounding in survival causal effect using validation data," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Jie He & Hui Li & Shumei Zhang & Xiaogang Duan, 2019. "Additive hazards model with auxiliary subgroup survival information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 128-149, January.
- Chixiang Chen & Ming Wang & Shuo Chen, 2023. "An efficient data integration scheme for synthesizing information from multiple secondary datasets for the parameter inference of the main analysis," Biometrics, The International Biometric Society, vol. 79(4), pages 2947-2960, December.
- Bo Han & Ingrid Van Keilegom & Xiaoguang Wang, 2022. "Semiparametric estimation of the nonmixture cure model with auxiliary survival information," Biometrics, The International Biometric Society, vol. 78(2), pages 448-459, June.
- Sahar Z. Zangeneh & Roderick J. Little, 2022. "Likelihood‐Based Inference for the Finite Population Mean with Post‐Stratification Information Under Non‐Ignorable Non‐Response," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 17-36, December.
- Ruoyu Wang & Qihua Wang & Wang Miao, 2023. "A robust fusion-extraction procedure with summary statistics in the presence of biased sources," Biometrika, Biometrika Trust, vol. 110(4), pages 1023-1040.
- Jan Pablo Burgard & Joscha Krause & Simon Schmaus, 2019. "Estimation of Regional Transition Probabilities for Spatial Dynamic Microsimulations from Survey Data Lacking in Regional Detail," Research Papers in Economics 2019-12, University of Trier, Department of Economics.
- Fei Gao & K. C. G. Chan, 2023. "Noniterative adjustment to regression estimators with population‐based auxiliary information for semiparametric models," Biometrics, The International Biometric Society, vol. 79(1), pages 140-150, March.
- Tian Gu & Jeremy Michael George Taylor & Bhramar Mukherjee, 2023. "A synthetic data integration framework to leverage external summary‐level information from heterogeneous populations," Biometrics, The International Biometric Society, vol. 79(4), pages 3831-3845, December.
- Han Zhang & Lu Deng & William Wheeler & Jing Qin & Kai Yu, 2022. "Integrative analysis of multiple case‐control studies," Biometrics, The International Biometric Society, vol. 78(3), pages 1080-1091, September.
- Ying Sheng & Yifei Sun & Chiung‐Yu Huang & Mi‐Ok Kim, 2022. "Synthesizing external aggregated information in the presence of population heterogeneity: A penalized empirical likelihood approach," Biometrics, The International Biometric Society, vol. 78(2), pages 679-690, June.
- Takumi Saegusa, 2020. "Confidence bands for a distribution function with merged data from multiple sources," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 144-158, August.
- Ying Sheng & Yifei Sun & Detian Deng & Chiung‐Yu Huang, 2020. "Censored linear regression in the presence or absence of auxiliary survival information," Biometrics, The International Biometric Society, vol. 76(3), pages 734-745, September.
- Ziqi Chen & Jing Ning & Yu Shen & Jing Qin, 2021. "Combining primary cohort data with external aggregate information without assuming comparability," Biometrics, The International Biometric Society, vol. 77(3), pages 1024-1036, September.
- Prosenjit Kundu & Nilanjan Chatterjee, 2023. "Logistic regression analysis of two‐phase studies using generalized method of moments," Biometrics, The International Biometric Society, vol. 79(1), pages 241-252, March.
- Saegusa Takumi, 2020. "Confidence bands for a distribution function with merged data from multiple sources," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 144-158, August.
- Burgard, Jan Pablo & Krause, Joscha & Schmaus, Simon, 2021. "Estimation of regional transition probabilities for spatial dynamic microsimulations from survey data lacking in regional detail," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
- Yu‐Jen Cheng & Yen‐Chun Liu & Chang‐Yu Tsai & Chiung‐Yu Huang, 2023. "Semiparametric estimation of the transformation model by leveraging external aggregate data in the presence of population heterogeneity," Biometrics, The International Biometric Society, vol. 79(3), pages 1996-2009, September.
More about this item
Keywords
Constrained stochastic optimization; Equality constraints; Sequential quadratic programming (SQP); Variance reduction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:86:y:2023:i:1:d:10.1007_s10589-023-00483-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.